Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genet ; 14: 1054558, 2023.
Article in English | MEDLINE | ID: mdl-36741318

ABSTRACT

Disease tolerance, a host's ability to limit damage from a given parasite burden, is quantified by the relationship between pathogen load and host survival or reproduction. Dermo disease, caused by the protozoan parasite P. marinus, negatively impacts survival in both wild and cultured eastern oyster (C. virginica) populations. Resistance to P. marinus has been the focus of previous studies, but tolerance also has important consequences for disease management in cultured and wild populations. In this study we measured dermo tolerance and evaluated global expression patterns of two sensitive and two tolerant eastern oyster families experimentally challenged with distinct doses of P. marinus (0, 106, 107, and 108 parasite spores per gram wet weight, n = 3-5 individuals per family per dose). Weighted Gene Correlation Network Analysis (WGCNA) identified several modules correlated with increasing parasite dose/infection intensity, as well as phenotype. Modules positively correlated with dose included transcripts and enriched GO terms related to hemocyte activation and cell cycle activity. Additionally, these modules included G-protein coupled receptor, toll-like receptor, and tumor necrosis factor pathways, which are important for immune effector molecule and apoptosis activation. Increased metabolic activity was also positively correlated with treatment. The module negatively correlated with infection intensity was enriched with GO terms associated with normal cellular activity and growth, indicating a trade-off with increased immune response. The module positively correlated with the tolerant phenotype was enriched for transcripts associated with "programmed cell death" and contained a large number of tripartite motif-containing proteins. Differential expression analysis was also performed on the 108 dosed group using the most sensitive family as the comparison reference. Results were consistent with the network analysis, but signals for "programmed cell death" and serine protease inhibitors were stronger in one tolerant family than the other, suggesting that there are multiple avenues for disease tolerance. These results provide new insight for defining dermo response traits and have important implications for applying selective breeding for disease management.

2.
Mar Biotechnol (NY) ; 25(1): 174-191, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36622459

ABSTRACT

The eastern oyster Crassostrea virginica is a major aquaculture species for the USA. The sustainable development of eastern oyster aquaculture depends upon the continued improvement of cultured stocks through advanced breeding technologies. The Eastern Oyster Breeding Consortium (EOBC) was formed to advance the genetics and breeding of the eastern oyster. To facilitate efficient genotyping needed for genomic studies and selection, the consortium developed two single-nucleotide polymorphism (SNP) arrays for the eastern oyster: one screening array with 566K SNPs and one breeders' array with 66K SNPs. The 566K screening array was developed based on whole-genome resequencing data from 292 oysters from Atlantic and Gulf of Mexico populations; it contains 566,262 SNPs including 47K from protein-coding genes with a marker conversion rate of 48.34%. The 66K array was developed using best-performing SNPs from the screening array, which contained 65,893 oyster SNPs including 22,984 genic markers with a calling rate of 99.34%, a concordance rate of 99.81%, and a much-improved marker conversion rate of 92.04%. Null alleles attributable to large indels were found in 13.1% of the SNPs, suggesting that copy number variation is pervasive. Both arrays provided easy identification and separation of selected stocks from wild progenitor populations. The arrays contain 31 mitochondrial SNPs that allowed unambiguous identification of Gulf mitochondrial genotypes in some Atlantic populations. The arrays also contain 756 probes from 13 oyster and human pathogens for possible detection. Our results show that marker conversion rate is low in high polymorphism species and that the two-step process of array development can greatly improve array performance. The two arrays will advance genomic research and accelerate genetic improvement of the eastern oyster by delineating genetic architecture of production traits and enabling genomic selection. The arrays also may be used to monitor pedigree and inbreeding, identify selected stocks and their introgression into wild populations, and assess the success of oyster restoration.


Subject(s)
Crassostrea , Animals , Crassostrea/genetics , DNA Copy Number Variations , Genome , Genomics , Genotype , Polymorphism, Single Nucleotide
3.
Dis Aquat Organ ; 151: 111-121, 2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36300764

ABSTRACT

A multiplex quantitative PCR (qPCR) assay for the simultaneous detection of 3 eastern oyster Crassostrea virginica parasites, Perkinsus marinus, Haplosporidium nelsoni, and H. costale, was developed using 3 different fluorescently labeled hydrolysis probes. The primers and probe from a previously validated singleplex qPCR for P. marinus detection were combined with newly designed primers and probes specific for H. nelsoni and H. costale. The functionality of the multiplex assay was demonstrated on 2 different platforms by the linear relationship of the standard curves and similar cycle threshold (CT) values between parasites. Efficiency of the multiplex qPCR assay on the Roche and BioRad platforms ranged between 93 and 101%. The sensitivity of detection ranged between 10 and 100 copies of plasmid DNA for P. marinus and Haplosporidium spp., respectively. The concordance between the Roche and BioRad platforms in the identification of the parasites P. marinus, H. nelsoni, and H. costale was 91, 97, and 97%, respectively, with a 10-fold increase in the sensitivity of detection of Haplosporidium spp. on the BioRad thermocycler. The concordance between multiplex qPCR and histology for P. marinus, H. nelsoni, and H. costale was 54, 57, and 87%, respectively. Discordances between detection methods were largely related to localized or low levels of infections in oyster tissues, and qPCR was the more sensitive diagnostic. The multiplex qPCR developed here is a sensitive diagnostic tool for the quantification and surveillance of single and mixed infections in the eastern oyster.


Subject(s)
Crassostrea , Haplosporida , Ostreidae , Parasites , Animals , Crassostrea/parasitology , Sensitivity and Specificity , Haplosporida/genetics , Real-Time Polymerase Chain Reaction/veterinary , DNA
4.
Dev Comp Immunol ; 129: 104339, 2022 04.
Article in English | MEDLINE | ID: mdl-34998862

ABSTRACT

The protozoan parasite Perkinsus marinus causes Dermo disease in eastern oysters, Crassostrea virginica, and can suppress apoptosis of infected hemocytes using incompletely understood mechanisms. This study challenged hemocytes in vitro with P. marinus for 1 h in the presence or absence of caspase inhibitor Z-VAD-FMK or Inhibitor of Apoptosis protein (IAP) inhibitor GDC-0152. Hemocytes exposure to P. marinus significantly reduced granulocyte apoptosis, and pre-incubation with Z-VAD-FMK did not affect P. marinus-induced apoptosis suppression. Hemocyte pre-incubation with GDC-0152 prior to P. marinus challenge further reduced apoptosis of granulocytes with engulfed parasite, but not mitochondrial permeabilization. This suggests P. marinus-induced apoptosis suppression may be caspase-independent, affect an IAP-involved pathway, and occur downstream of mitochondrial permeabilization. P. marinus challenge stimulated hemocyte differential expression of oxidation-reduction, TNFR, and NF-kB pathways. WGCNA analysis of P. marinus expression in response to hemocyte exposure revealed correlated protease, kinase, and hydrolase expression that could contribute to P. marinus-induced apoptosis suppression.


Subject(s)
Crassostrea/parasitology , Amino Acid Chloromethyl Ketones , Animals , Apicomplexa , Apoptosis , Caspases , Hemocytes/parasitology , Host-Parasite Interactions , Inhibitor of Apoptosis Proteins , NF-kappa B , Oxidation-Reduction , Oxidative Stress
5.
Front Microbiol ; 10: 1060, 2019.
Article in English | MEDLINE | ID: mdl-31156583

ABSTRACT

Larval oysters in hatcheries are susceptible to diseases caused by bacterial pathogens, including Vibrio spp. Previous studies have shown that daily addition of the probiotic Bacillus pumilus RI06-95 to water in rearing tanks increases larval survival when challenged with the pathogen Vibrio coralliilyticus. We propose that the presence of probiotics causes shifts in bacterial community structure in rearing tanks, leading to a net decrease in the relative abundance of potential pathogens. During three trials spanning the 2012-2015 hatchery seasons, larvae, tank biofilm, and rearing water samples were collected from control and probiotic-treated tanks in an oyster hatchery over a 12-day period after spawning. Samples were analyzed by 16S rRNA sequencing of the V4 or V6 regions followed by taxonomic classification, in order to determine bacterial community structures. There were significant differences in bacterial composition over time and between sample types, but no major effect of probiotics on the structure and diversity of bacterial communities (phylum level, Bray-Curtis k = 2, 95% confidence). Probiotic treatment, however, led to a higher relative percent abundance of Oceanospirillales and Bacillus spp. in water and oyster larvae. In the water, an increase in Vibrio spp. diversity in the absence of a net increase in relative read abundance suggests a likely decrease in the abundance of specific pathogenic Vibrio spp., and therefore lower chances of a disease outbreak. Co-occurrence network analysis also suggests that probiotic treatment had a systemic effect on targeted members of the bacterial community, leading to a net decrease in potentially pathogenic species.

SELECTION OF CITATIONS
SEARCH DETAIL
...