Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
Diabetologia ; 61(11): 2422-2432, 2018 11.
Article in English | MEDLINE | ID: mdl-30094465

ABSTRACT

AIMS/HYPOTHESIS: Diabetic retinopathy is increasing in prevalence worldwide and is fast becoming a global epidemic and a leading cause of visual loss. Current therapies are limited, and the development of effective treatments for diabetic retinopathy requires a greater in-depth knowledge of disease progression and suitable modelling of diabetic retinopathy in animals. The aim of this study was to assess the early pathological changes in retinal morphology and neuronal, inflammatory and vascular features consistent with diabetic retinopathy in the ob/ob mouse model of type 2 diabetes, to investigate whether features similar to those in human diabetic retinopathy were present. METHODS: Male and female wild-type (+/+), heterozygous (+/-) and homozygous (-/-) BTBR ob/ob mice were examined at 6, 10, 15 and 20 weeks of age. Animals were weighed and blood glucose was measured. TUNEL and brain-specific homeobox/POU domain protein 3A (BRN3A) markers were used to examine retinal ganglion cells. We used immunostaining (collagen IV and platelet endothelial cell adhesion molecule [PECAM]/CD31) to reveal retinal vessel degeneration. Spectral domain optical coherence tomography was used to reveal changes in the thickness and structure of the retinal layer. Vitreous fluorophotometry was used to investigate vascular permeability. A-waves, b-waves and oscillatory potentials were measured under photopic and scotopic conditions. Concanavalin A leucostasis and immunostaining with glial fibrillary acidic protein (GFAP) and ionised calcium-binding adapter molecule 1 (IBA-1) identified differences in inflammatory status. Paraffin sections and transmission electron microscopy were used to reveal changes in the thickness and structure of the retinal layer. RESULTS: Following the development of obesity and hyperglycaemia in 2-week-old and 3-week-old ob-/ob- mice, respectively (p < 0.001), early functional deficits (p < 0.001) and thinning of the inner retina (p < 0.001) were identified. Glial activation, leucostasis (p < 0.05) and a shift in microglia/macrophage phenotype were observed before microvascular degeneration (p < 0.05) and elevated vascular permeability occurred (p < 0.05). CONCLUSIONS/INTERPRETATION: The present characterisation of the development of diabetic retinopathy in the ob/ob mouse represents a platform that will enable the development of new therapies, particularly for the early stages of disease.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/pathology , Retina/metabolism , Retina/pathology , Animals , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 2/genetics , Disease Models, Animal , Female , Inflammation/metabolism , Inflammation/pathology , Male , Mice , Obesity/metabolism , Obesity/pathology , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/pathology , Retinal Vessels/metabolism , Retinal Vessels/pathology
4.
EMBO Mol Med ; 8(11): 1265-1288, 2016 11.
Article in English | MEDLINE | ID: mdl-27742718

ABSTRACT

Anti-angiogenic therapies using biological molecules that neutralize vascular endothelial growth factor-A (VEGF-A) have revolutionized treatment of retinal vascular diseases including age-related macular degeneration (AMD). This study reports preclinical assessment of a strategy to enhance anti-VEGF-A monotherapy efficacy by targeting both VEGF-A and angiopoietin-2 (ANG-2), a factor strongly upregulated in vitreous fluids of patients with retinal vascular disease and exerting some of its activities in concert with VEGF-A. Simultaneous VEGF-A and ANG-2 inhibition was found to reduce vessel lesion number, permeability, retinal edema, and neuron loss more effectively than either agent alone in a spontaneous choroidal neovascularization (CNV) model. We describe the generation of a bispecific domain-exchanged (crossed) monoclonal antibody (CrossMAb; RG7716) capable of binding, neutralizing, and depleting VEGF-A and ANG-2. RG7716 showed greater efficacy than anti-VEGF-A alone in a non-human primate laser-induced CNV model after intravitreal delivery. Modification of RG7716's FcRn and FcγR binding sites disabled the antibodies' Fc-mediated effector functions. This resulted in increased systemic, but not ocular, clearance. These properties make RG7716 a potential next-generation therapy for neovascular indications of the eye.


Subject(s)
Angiopoietin-2/antagonists & inhibitors , Antibodies, Monoclonal/administration & dosage , Eye Diseases/drug therapy , Immunologic Factors/administration & dosage , Neovascularization, Pathologic/drug therapy , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Animals , Antibodies, Monoclonal/isolation & purification , Antibodies, Monoclonal/pharmacology , Disease Models, Animal , Drug Evaluation, Preclinical , Eye Diseases/pathology , Immunologic Factors/isolation & purification , Immunologic Factors/pharmacology , Macaca fascicularis , Treatment Outcome
5.
PLoS One ; 8(6): e65518, 2013.
Article in English | MEDLINE | ID: mdl-23799019

ABSTRACT

Age-related macular degeneration (AMD) is a leading cause of legal blindness in the Western world. There are effective treatments for the vascular complications of neo-vascular AMD, but no effective therapies are available for the dry/atrophic form of the disease. A previously described transgenic CFH-gene deficient mouse model, (cfh-/-), shows hallmarks of early AMD. The ocular phenotype has been further analysed to demonstrate amyloid beta (Aß) rich basement membrane deposits associated with activated complement C3. Cfh-/- mice were treated systemically in both prophylactic and therapeutic regimes with an anti-Aß monoclonal antibody (mAb), 6F6, to determine the effect on the cfh-/- retinal phenotype. Prophylactic treatment with 6F6 demonstrated a dose dependent reduction in the accumulation of both Aß and activated C3 deposition. A similar reduction in the retinal endpoints could be seen after therapeutic treatment. Serum Aß levels after systemic administration of 6F6 show accumulation of Aß in the periphery suggestive of a peripheral sink mechanism. In summary, anti-Aß mAb treatment can partially prevent or reverse ocular phenotypes of the cfh-/- mouse. The data support this therapeutic approach in humans potentially modulating two key elements in the pathogenesis of AMD - Aß and activated, complement C3.


Subject(s)
Amyloid beta-Peptides/metabolism , Antibodies, Monoclonal, Murine-Derived/administration & dosage , Complement C3/metabolism , Macular Degeneration/drug therapy , Peptide Fragments/metabolism , Retina/metabolism , Amyloid beta-Peptides/immunology , Animals , Disease Models, Animal , Humans , Hybridomas , Macular Degeneration/immunology , Macular Degeneration/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Peptide Fragments/immunology , Retina/pathology
6.
Invest Ophthalmol Vis Sci ; 54(2): 1490-500, 2013 Feb 27.
Article in English | MEDLINE | ID: mdl-23385800

ABSTRACT

PURPOSE: Two noninvasive delivery strategies for VEGF/PDGF receptor tyrosine kinase inhibitors (RTKI) were explored that exploited uveal retention as a means for establishing an ocular drug depot: a single oral "loading" dose and topical administration. METHODS: Melanin binding was confirmed by centrifugation and mass spectrometry. Ocular retention was examined in pigmented and albino rats. Ocular release kinetics were measured 3 to 28 days postdosing in pigmented rats. Microautoradiography was used to demonstrate retention of RTKI in the uveal tract. A uveal drug depot of pazopanib was created by a single oral dose prior to induction of laser choroidal neovascularization (CNV). Choroid/retinal pigmented epithelium (RPE) retention of a related RTKI with enhanced topical bioavailability, GW771806, was confirmed by bioanalytics, and its ability to regress CNV compared with pazopanib. RESULTS: Pazopanib and GW771806 directly bound melanin and were retained within the uveal tract of pigmented rats for weeks following a single oral dose. Pazopanib was undetectable systemically following a single oral administration prior to CNV induction, and reduced CNV as well as twice daily dosing. Topical ocular delivery of GW771806 at 5 mg/mL led to high choroidal/RPE exposure and significantly regressed CNV lesions; 2 mg/mL prevented lesion progression. CONCLUSIONS: Uveal retention of drugs such as pazopanib can be used to create a sustained-release depot. Topical GW771806 regressed CNV. These data indicate that topical or infrequent oral loading dose treatment with VEGF/PDGF RTKI retained in the choroid/RPE might allow noninvasive treatments for ocular neovascular disease.


Subject(s)
Angiogenesis Inhibitors/administration & dosage , Choroidal Neovascularization/drug therapy , Drug Delivery Systems , Indazoles/administration & dosage , Pyrimidines/administration & dosage , Receptors, Platelet-Derived Growth Factor/antagonists & inhibitors , Sulfonamides/administration & dosage , Sulfones/administration & dosage , Vascular Endothelial Growth Factor Receptor-1/antagonists & inhibitors , Administration, Oral , Administration, Topical , Angiogenesis Inhibitors/pharmacokinetics , Animals , Autoradiography , Choroidal Neovascularization/diagnosis , Choroidal Neovascularization/metabolism , Female , Fluorescein Angiography , Half-Life , Indazoles/pharmacokinetics , Melanins/metabolism , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Pyrimidines/pharmacokinetics , Rats , Rats, Long-Evans , Rats, Sprague-Dawley , Sulfonamides/pharmacokinetics , Sulfones/pharmacokinetics , Uvea/metabolism
7.
Am J Pathol ; 175(1): 412-21, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19541934

ABSTRACT

Vascular pathologies are known to be associated with age-related macular degeneration. Recently, age-related macular degeneration was associated with a single-nucleotide substitution of the complement factor H (CFH) gene, part of the alternative pathway of the complement system, a critical element in the innate immune response. Such polymorphisms are found in more than 50% of cases of age-related macular degeneration. Here we show that the absence of CFH causes an autoimmune response that targets the vascular endothelium of both the inner and outer retinal vascular networks. In CFH-knockout (cfh(-/-)) mice, C3 and C3b, key components of the complement system, are progressively deposited on retinal vessels, which subsequently become restricted and wither, resulting in a reduction of retinal blood supply. This result leads to increased oxygen stress. While such effects are not systemic, these structural changes are mirrored in functional changes with a substantial decline in retinal blood flow dynamics. When the system is challenged functionally by laser-induced choroidal neovascularization, fluorescein leakage was significantly smaller in cfh(-/-) mice compared with controls, likely due to reduced retinal perfusion. These data reveal that in both the presence and absence of exogenous challenge to the innate immune system, CFH is required to maintain normal levels of retinal perfusion. It is likely that C3 and C3b accumulation in the aged CFH-deficient retina is associated with complement-mediated retinal endothelium destruction.


Subject(s)
Complement Factor H/metabolism , Retinal Neovascularization/metabolism , Retinal Vessels/metabolism , Retinal Vessels/pathology , Aging/physiology , Animals , Complement C3/metabolism , Complement C3b/metabolism , Complement Factor H/genetics , Fluorescein Angiography , Immunohistochemistry , Mice , Mice, Knockout , Retinal Neovascularization/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...