Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
NMR Biomed ; 35(6): e4680, 2022 06.
Article in English | MEDLINE | ID: mdl-34957637

ABSTRACT

Noninvasive methods to study changes in tumor microstructure enable early assessment of treatment response and thus facilitate personalized treatment. The aim of this study was to evaluate the diffusion MRI model, Vascular, Extracellular and Restricted Diffusion for Cytometry in Tumors (VERDICT), for early response assessment to external radiation treatment and to compare the results with those of more studied sets of parameters derived from diffusion-weighted MRI data. Mice xenografted with human small intestine tumors were treated with external radiation treatment, and diffusion MRI experiments were performed on the day before and up to 2 weeks after treatment. The diffusion models VERDICT, ADC, IVIM, and DKI were fitted to MRI data, and the treatment response of each tumor was calculated based on pretreatment tumor growth and post-treatment tumor volume regression. Linear regression and correlation analysis were used to evaluate each model and their respective parameters for explaining the treatment response. VERDICT analysis showed significant changes from day -1 to day 3 for the intracellular and extracellular volume fraction, as well as the cell radius index (p < 0.05; Wilcoxon signed-rank test). The strongest correlation between the diffusion model parameters and the tumor treatment response was seen for the ADC, kurtosis-corrected diffusion coefficient, and intracellular volume fraction on day 3 (τ = 0.47, 0.52, and -0.49, respectively, p < 0.05; Kendall rank correlation coefficient). Of all the tested models, VERDICT held the strongest explanatory value for the tumor treatment response on day 3 (R2  = 0.75, p < 0.01; linear regression). In conclusion, VERDICT has potential for early assessment of external radiation treatment and may provide further insights into the underlying biological effects of radiation on tumor tissue. In addition, the results suggest that the time window for assessment of treatment response using dMRI may be narrow.


Subject(s)
Neuroendocrine Tumors , Animals , Diffusion Magnetic Resonance Imaging/methods , Magnetic Resonance Angiography , Magnetic Resonance Imaging , Mice , Neuroendocrine Tumors/diagnostic imaging , Neuroendocrine Tumors/radiotherapy , Tumor Burden
2.
MAGMA ; 34(4): 545-554, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33355720

ABSTRACT

OBJECTIVE: To study the need for inclusion of shaped RF pulses and magnetic field gradients in simulations of basis sets for the analysis of proton MR spectra of single voxels of the brain acquired with a semi-LASER pulse sequence. MATERIALS AND METHODS: MRS basis sets where simulated at different echo times with hard RF pulses as well as with shaped RF pulses without or with magnetic field gradients included. The influence on metabolite concentration quantification was assessed using both phantom and in vivo measurements. For comparison, simulations and measurements were performed with the PRESS pulse sequence. RESULTS: The effect of including gradients in the simulations was smaller for semi-LASER than for PRESS, however, still noticeable. The difference was larger for strongly coupled metabolites and at longer echo times. Metabolite quantification using semi-LASER was thereby less dependent on the inclusion of gradients than PRESS, which was seen in both phantom and in vivo measurements. DISCUSSION: The inclusion of the shaped RF pulses and magnetic field gradients in the simulation of basis sets for semi-LASER is only important for strongly coupled metabolites. If computational time is a limiting factor, simple simulations with hard RF pulses can provide almost as accurate metabolite quantification as those that include the chemical-shift related displacement.


Subject(s)
Brain , Magnetic Fields , Brain/diagnostic imaging , Humans , Lasers , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Male , Phantoms, Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...