Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 224
Filter
1.
Parasit Vectors ; 17(1): 220, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741172

ABSTRACT

BACKGROUND: Japanese encephalitis virus (JEV) is an emerging mosquito-borne Orthoflavivirus that poses a significant public health risk in many temperate and tropical regions in Asia. Since the climate in some endemic countries is similar to temperate climates observed in Europe, understanding the role of specific mosquito species in the transmission of JEV is essential for predicting and effectively controlling the potential for the introduction and establishment of JEV in Europe. METHODS: This study aimed to investigate the vector competence of colonized Culex pipiens biotype molestus mosquitoes for JEV. The mosquitoes were initially collected from the field in southern Sweden. The mosquitoes were offered a blood meal containing the Nakayama strain of JEV (genotype III), and infection rates, dissemination rates, and transmission rates were evaluated at 14, 21, and 28 days post-feeding. RESULTS: The study revealed that colonized Swedish Cx. pipiens are susceptible to JEV infection, with a stable infection rate of around 10% at all timepoints. However, the virus was only detected in the legs of one mosquito at 21 days post-feeding, and no mosquito saliva contained JEV. CONCLUSIONS: Overall, this research shows that Swedish Cx. pipiens can become infected with JEV, and emphasizes the importance of further understanding of the thresholds and barriers for JEV dissemination in mosquitoes.


Subject(s)
Culex , Encephalitis Virus, Japanese , Encephalitis, Japanese , Mosquito Vectors , Animals , Culex/virology , Culex/physiology , Encephalitis Virus, Japanese/physiology , Sweden , Mosquito Vectors/virology , Encephalitis, Japanese/transmission , Encephalitis, Japanese/virology , Female , Saliva/virology , Humans
2.
Emerg Infect Dis ; 30(4): 732-737, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38526134

ABSTRACT

In 2018, a local case of nephropathia epidemica was reported in Scania, southern Sweden, more than 500 km south of the previously known presence of human hantavirus infections in Sweden. Another case emerged in the same area in 2020. To investigate the zoonotic origin of those cases, we trapped rodents in Ballingslöv, Norra Sandby, and Sörby in southern Sweden during 2020‒2021. We found Puumala virus (PUUV) in lung tissues from 9 of 74 Myodes glareolus bank voles by screening tissues using a hantavirus pan-large segment reverse transcription PCR. Genetic analysis revealed that the PUUV strains were distinct from those found in northern Sweden and Denmark and belonged to the Finnish PUUV lineage. Our findings suggest an introduction of PUUV from Finland or Karelia, causing the human PUUV infections in Scania. This discovery emphasizes the need to understand the evolution, cross-species transmission, and disease outcomes of this newly found PUUV variant.


Subject(s)
Hantavirus Infections , Hemorrhagic Fever with Renal Syndrome , Puumala virus , Animals , Humans , Hemorrhagic Fever with Renal Syndrome/epidemiology , Hemorrhagic Fever with Renal Syndrome/veterinary , Puumala virus/genetics , Sweden/epidemiology , Arvicolinae
3.
One Health ; 18: 100707, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38500563

ABSTRACT

Usutu virus (USUV) is an emerging mosquito-borne flavivirus with increasing prevalence in Europe. Understanding the role of mosquito species in USUV transmission is crucial for predicting and controlling potential outbreaks. This study aimed to assess the vector competence of Swedish Culex pipiens for USUV. The mosquitoes were orally infected with an Italian strain of USUV (Bologna 2009) and infection rates (IR), dissemination rates (DR), and transmission rates (TR) were evaluated over 7 to 28 days post-infection. The study revealed that Swedish Cx. pipiens are susceptible to USUV infection, with a gradual decrease in IR over time. However, the percentage of mosquitoes with the ability to transmit the virus remained consistent across all time points, indicating a relatively short extrinsic incubation period. Overall, this research highlights the potential of Swedish Cx. pipiens as vectors for USUV and emphasizes the importance of surveillance and monitoring to prevent future outbreaks of mosquito-borne diseases.

4.
Euro Surveill ; 29(2)2024 Jan.
Article in English | MEDLINE | ID: mdl-38214080

ABSTRACT

BackgroundIn Sweden, information on seroprevalence of tick-borne encephalitis virus (TBEV) in the population, including vaccination coverage and infection, is scattered. This is largely due to the absence of a national tick-borne encephalitis (TBE) vaccination registry, scarcity of previous serological studies and use of serological methods not distinguishing between antibodies induced by vaccination and infection. Furthermore, the number of notified TBE cases in Sweden has continued to increase in recent years despite increased vaccination.AimThe aim was to estimate the TBEV seroprevalence in Sweden.MethodsIn 2018 and 2019, 2,700 serum samples from blood donors in nine Swedish regions were analysed using a serological method that can distinguish antibodies induced by vaccination from antibodies elicited by infection. The regions were chosen to reflect differences in notified TBE incidence.ResultsThe overall seroprevalence varied from 9.7% (95% confidence interval (CI): 6.6-13.6%) to 64.0% (95% CI: 58.3-69.4%) between regions. The proportion of vaccinated individuals ranged from 8.7% (95% CI: 5.8-12.6) to 57.0% (95% CI: 51.2-62.6) and of infected from 1.0% (95% CI: 0.2-3.0) to 7.0% (95% CI: 4.5-10.7). Thus, more than 160,000 and 1,600,000 individuals could have been infected by TBEV and vaccinated against TBE, respectively. The mean manifestation index was 3.1%.ConclusionA difference was observed between low- and high-incidence TBE regions, on the overall TBEV seroprevalence and when separated into vaccinated and infected individuals. The estimated incidence and manifestation index argue that a large proportion of TBEV infections are not diagnosed.


Subject(s)
Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne , Flavivirus Infections , Humans , Encephalitis, Tick-Borne/epidemiology , Encephalitis, Tick-Borne/prevention & control , Sweden/epidemiology , Vaccination Coverage , Seroepidemiologic Studies , Vaccination , Antibodies, Viral
5.
Glycobiology ; 34(3)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38127648

ABSTRACT

Influenza A virus (IAV) pandemics result from interspecies transmission events within the avian reservoir and further into mammals including humans. Receptor incompatibility due to differently expressed glycan structures between species has been suggested to limit zoonotic IAV transmission from the wild bird reservoir as well as between different bird species. Using glycoproteomics, we have studied the repertoires of expressed glycan structures with focus on putative sialic acid-containing glycan receptors for IAV in mallard, chicken and tufted duck; three bird species with different roles in the zoonotic ecology of IAV. The methodology used pinpoints specific glycan structures to specific glycosylation sites of identified glycoproteins and was also used to successfully discriminate α2-3- from α2-6-linked terminal sialic acids by careful analysis of oxonium ions released from glycopeptides in tandem MS/MS (MS2), and MS/MS/MS (MS3). Our analysis clearly demonstrated that all three bird species can produce complex N-glycans including α2-3-linked sialyl Lewis structures, as well as both N- and O- glycans terminated with both α2-3- and α2-6-linked Neu5Ac. We also found the recently identified putative IAV receptor structures, Man-6P N-glycopeptides, in all tissues of the three bird species. Furthermore, we found many similarities in the repertoires of expressed receptors both between the bird species investigated and to previously published data from pigs and humans. Our findings of sialylated glycan structures, previously anticipated to be mammalian specific, in all three bird species may have major implications for our understanding of the role of receptor incompatibility in interspecies transmission of IAV.


Subject(s)
Influenza A virus , Humans , Animals , Swine , Influenza A virus/metabolism , Ducks/metabolism , Chickens/metabolism , Tandem Mass Spectrometry , Glycopeptides/metabolism , Polysaccharides/metabolism , Mammals/metabolism
6.
iScience ; 26(12): 108441, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38144451

ABSTRACT

Susceptibility to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections is highly variable and could be mediated by a cross-protective pre-immunity. We identified 14 cross-reactive peptides between SARS-CoV-2 and influenza A H1N1, H3N2, and human herpesvirus (HHV)-6A/B with potential relevance. The H1N1 peptide NGVEGF was identical to a peptide in the most critical receptor binding motif in SARS-CoV-2 spike protein that interacts with the angiotensin converting enzyme 2 receptor. About 62%-73% of COVID-19-negative blood donors in Stockholm had antibodies to this peptide in the early pre-vaccination phase of the pandemic. Seasonal flu vaccination enhanced neutralizing capacity to SARS-CoV-2 and T cell immunity to this peptide. Mathematical modeling taking the estimated pre-immunity levels to flu into account could fully predict pre-Omicron SARS-CoV-2 outbreaks in Stockholm and India. This cross-immunity provides mechanistic explanations to the epidemiological observation that influenza vaccination protected people against early SARS-CoV-2 infections and implies that flu-mediated cross-protective immunity significantly dampened the first SARS-CoV-2 outbreaks.

7.
Infect Ecol Epidemiol ; 13(1): 2270258, 2023.
Article in English | MEDLINE | ID: mdl-37867606

ABSTRACT

The alpine ecosystems and communities of central Asia are currently undergoing large-scale ecological and socio-ecological changes likely to affect wildlife-livestock-human disease interactions and zoonosis transmission risk. However, relatively little is known about the prevalence of pathogens in this region. Between 2012 and 2015 we screened 142 rodents in Mongolia's Gobi desert for exposure to important zoonotic and livestock pathogens. Rodent seroprevalence to Leptospira spp. was >1/3 of tested animals, Toxoplasma gondii and Coxiella burnetii approximately 1/8 animals, and the hantaviruses being between 1/20 (Puumala-like hantavirus) and <1/100 (Seoul-like hantavirus). Gerbils trapped inside local dwellings were one of the species seropositive to Puumala-like hantavirus, suggesting a potential zoonotic transmission pathway. Seventeen genera of zoonotic bacteria were also detected in the faeces and ticks collected from these rodents, with one tick testing positive to Yersinia. Our study helps provide baseline patterns of disease prevalence needed to infer potential transmission between source and target populations in this region, and to help shift the focus of epidemiological research towards understanding disease transmission among species and proactive disease mitigation strategies within a broader One Health framework.

8.
J Gen Virol ; 104(10)2023 10.
Article in English | MEDLINE | ID: mdl-37801017

ABSTRACT

Identification of B-cell epitopes facilitates the development of vaccines, therapeutic antibodies and diagnostic tools. Previously, the binding site of the bank vole monoclonal antibody (mAb) 4G2 against Puumala virus (PUUV, an orthohantavirus in the Hantaviridae family of the Bunyavirales order) was predicted using a combination of methods, including pepscan, phage-display, and site-directed mutagenesis of vesicular stomatitis virus (VSV) particles pseudotyped with Gn and Gc glycoproteins from PUUV. These techniques led to the identification of the neutralization escape mutation F915A. To our surprise, a recent crystal structure of PUUV Gc in complex with Fab 4G2 revealed that residue F915 is distal from epitope of mAb 4G2. To clarify this issue and explore potential explanations for the inconsistency, we designed a mutagenesis experiment to probe the 4G2 epitope, with three PUUV pseudoviruses carrying amino acid changes E725A, S944F, and S946F, located within the structure-based 4G2 epitope on the Gc. These amino acid changes were able to convey neutralization escape from 4G2, and S944F and S946F also conveyed escape from neutralization by human mAb 1C9. Furthermore, our mapping of all the known neutralization evasion sites from hantaviral Gcs onto PUUV Gc revealed that over 60 % of these sites reside within or close to the epitope of mAb 4G2, indicating that this region may represent a crucial area targeted by neutralizing antibodies against PUUV, and to a lesser extent, other hantaviruses. The identification of this site of vulnerability could guide the creation of subunit vaccines against PUUV and other hantaviruses in the future.


Subject(s)
Orthohantavirus , Puumala virus , Humans , Puumala virus/genetics , Puumala virus/chemistry , Antibodies, Monoclonal , Antibodies, Neutralizing , Epitopes, B-Lymphocyte , Amino Acids , Antibodies, Viral , Neutralization Tests
9.
Acta Oncol ; 62(12): 1707-1715, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37729083

ABSTRACT

BACKGROUND: Swedish recommendations to reduce the risk of COVID-19 relied on each citizen's own sense of responsibility rather than mandatory lockdowns. We studied how COVID-19-related self-isolation and anxiety correlated to SARS-CoV-2 seropositivity and PCR-positivity in patients with active cancer treatment. METHODS: In a longitudinal cohort study at Uppsala University Hospital patients and cancer personnel were included between April 1st 2020 to August 1st 2020. Serological testing for SARS-CoV-2 was done every 8-12-weeks until 30 March 2021. Patients completed a survey at inclusion regarding self-reported COVID-19-related anxiety and self-isolation. RESULTS: A total of 622 patients [n = 475 with solid malignancies (SM), n = 147 with haematological malignancies (HM)], and 358 healthcare personnel were included. The seropositivity rate was lower for patients than for personnel; 10.5% for SM patients, 6.8% for HM patients, and 16.2% for personnel (p = 0.005). Strict adherence to self-isolation guidelines was reported by 54% of patients but was not associated with a lower risk of becoming seropositive [OR = 1.4 (0.8-2.5), p = 0.2]. High anxiety was expressed by 32% of patients, more often by SM patients than HM patients (34% vs 25% [OR = 1.6 (1.1-2.5, p = 0.03)]). Female gender [OR = 3.5 (2.4-5.2), p < 0.001] and being born outside of Europe [OR = 2.9 (1.4-6.4), p = 0.007] were both associated with high anxiety. Patients reporting high anxiety became seropositive to a similar degree as those with low anxiety [OR = 0.7 (0.3-1.2), p = 0.2]. HM patients with PCR-positive COVID-19 were more likely than SM patients to require oxygen therapy, including non-invasive ventilation/intubation (69% vs. 26%, p = 0.005). CONCLUSION: For Swedish patients on active cancer treatment, high self-assessed COVID-19-related anxiety or strict adherence to self-isolation guidelines were not associated with a lower risk of COVID-19. Patients with HM were less likely to develop serological antibody response after COVID-19 and were more likely to require advanced hospital care, but expressed less COVID-19-related anxiety than patients with SM.


Subject(s)
COVID-19 , Neoplasms , Humans , Female , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , Sweden/epidemiology , Longitudinal Studies , Communicable Disease Control , Neoplasms/epidemiology , Neoplasms/therapy
10.
Antibiotics (Basel) ; 12(9)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37760745

ABSTRACT

The consumption of milk contaminated with antibiotic-resistant bacteria poses a significant health threat to humans. This study aimed to investigate the prevalence of Enterobacteriaceae producing ß-lactamases (ESBL, MBL, and AmpC) in cow and buffalo milk samples from two Indian states, Haryana and Assam. A total of 401 milk samples were collected from dairy farmers and vendors in the specified districts. Microbiological assays, antibiotic susceptibility testing, and PCR-based genotyping were employed to analyze 421 Gram-negative bacterial isolates. The overall prevalence of ß-lactamase genes was 10% (confidence interval (CI) (7-13)), with higher rates in Haryana (13%, CI (9-19)) compared to Assam (7%, CI (4-11)). The identified ß-lactamase genes in isolates were blaCMY, blaMOX, blaFOX, blaEBC, and blaDHA, associated with AmpC production. Additionally, blaCTX-M1, blaSHV, and blaTEM were detected as ESBL producers, while blaVIM, blaIMP, blaSPM, blaSIM, and blaGIM were identified as MBL producers. Notably, Shigella spp. were the dominant ß-lactamase producers among identified Enterobacteriaceae. This study highlights the presence of various prevalent ß-lactamase genes in milk isolates, indicating the potential risk of antimicrobial-resistant bacteria in dairy products. The presence of ß-lactam resistance raises concern as this could restrict antibiotic options for treatment. The discordance between genotypic and phenotypic methods emphasizes the necessity for comprehensive approaches that integrate both techniques to accurately assess antibiotic resistance. Urgent collaborative action incorporating rational and regulated use of antibiotics across the dairy value chain is required to address the global challenge of ß-lactam resistance.

11.
Microorganisms ; 11(8)2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37630551

ABSTRACT

We compiled data on notified cases of leptospirosis in animals and humans in Sweden. Published studies on leptospirosis in humans and animals from the beginning of the 20th century onwards are summarized. During the Second World War, hundreds of leptospirosis cases in humans were reported in Sweden, but since then, there have been only a few severe cases. Surveillance of leptospirosis in domestic animals demonstrates that the pathogen is still occurring. The occurrence of Leptospira in humans and animals in the other Nordic countries resembles that in Sweden. Leptospirosis is an underdiagnosed and underreported disease globally, both in animals and humans, partly due to the lack of simple, rapid diagnostic tools but possibly also due to the lack of awareness among physicians, veterinarians and nurses. Traditionally, leptospirosis has been mostly diagnosed by serology, but development of molecular methodshas improved the capability for correct diagnosis. As of today, leptospirosis is regarded as a relatively uncommon disease in the Nordic countries, but in some other countries, it is considered a neglected zoonosis or a (re-)emerging disease that may become more common in the future. Possible factors that could contribute to an increase in incidence are discussed in this review. Active surveillance of humans and domestic and wild animals and stringent rodent control in society and animal farms are of outmost importance for prevention.

12.
Viruses ; 15(6)2023 05 30.
Article in English | MEDLINE | ID: mdl-37376580

ABSTRACT

The current gold standard assay for detecting neutralizing antibodies (NAbs) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the conventional virus neutralization test (cVNT), which requires infectious virus and a biosafety level 3 laboratory. Here, we report the development of a SARS-CoV-2 surrogate virus neutralization test (sVNT) that, with Luminex technology, detects NAbs. The assay was designed to mimic the virus-host interaction and is based on antibody blockage between the human angiotensin-converting enzyme 2 (hACE2) receptor and the spike (S) protein of the Wuhan, Delta, and Omicron (B.1.1.529) variants of SARS-CoV-2. The sVNT proved to have a 100% correlation with a SARS-CoV-2 cVNT regarding qualitative results. Binding between the hACE2 receptor and the S1 domain of the B.1.1.529 lineage of the Omicron variant was not observed in the assay but between the receptor and an S1 + S2 trimer and the receptor binding domain (RBD) in a reduced manner, suggesting less efficient receptor binding for the B.1.1.529 Omicron variant. The results indicate that the SARS-CoV-2 sVNT is a suitable tool for both the research community and the public health service, as it may serve as an efficient diagnostic alternative to the cVNT.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Humans , Neutralization Tests , SARS-CoV-2/genetics , COVID-19/diagnosis , Antibodies, Neutralizing , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Viral
13.
Microbiol Spectr ; 11(4): e0258622, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37358408

ABSTRACT

Cross-species transmission of influenza A virus (IAV) from wild waterfowl to poultry is the first step in a chain of events that can ultimately lead to exposure and infection of humans. Herein, we study the outcome of infection with eight different mallard-origin IAV subtypes in two different avian hosts: tufted ducks and chickens. We found that infection and shedding patterns as well as innate immune responses were highly dependent on viral subtypes, host species, and inoculation routes. For example, intraoesophageal inoculation, commonly used in mallard infection experiments, resulted in no infections in contrast to oculonasal inoculation, suggesting a difference in transmission routes. Despite H9N2 being endemic in chickens, inoculation of mallard-origin H9N2 failed to cause viable infection beyond 1 day postinfection in our study design. The innate immune responses were markedly different in chickens and tufted ducks, and despite the presence of retinoic acid-inducible gene-I (RIG-I) in tufted duck transcriptomes, it was neither up nor downregulated in response to infection. Overall, we have revealed the heterogeneity of infection patterns and responses in two markedly different avian hosts following a challenge with mallard-origin IAV. These virus-host interactions provide new insights into important aspects of interspecies transmission of IAV. IMPORTANCE Our current findings highlight important aspects of IAV infection in birds that have implications for our understanding of its zoonotic ecology. In contrast to mallards where the intestinal tract is the main site of IAV replication, chickens and tufted ducks show limited or no signs of intestinal infection suggesting that the fecal-oral transmission route might not apply to all bird IAV host species. Our results indicate that mallard-origin IAVs undergo genetic changes upon introduction into new hosts, suggesting rapid adaptation to a new environment. However, similar to the mallard, chickens and tufted ducks show a limited immune response to infection with low pathogenic avian influenza viruses. These findings and future studies in different IAV hosts are important for our understanding of barriers to IAV transmission between species and ultimately from the wild reservoir to humans.


Subject(s)
Influenza A Virus, H9N2 Subtype , Influenza in Birds , Humans , Animals , Ducks , Chickens , Immunity, Innate
14.
J Gen Virol ; 104(4)2023 04.
Article in English | MEDLINE | ID: mdl-37018118

ABSTRACT

The neuraminidase inhibitor (NAI) oseltamivir is stockpiled globally as part of influenza pandemic preparedness. However, oseltamivir carboxylate (OC) resistance develops in avian influenza virus (AIV) infecting mallards exposed to environmental-like OC concentrations, suggesting that environmental resistance is a real concern. Herein we used an in vivo model to investigate if avian influenza H1N1 with the OC-resistant mutation NA-H274Y (51833/H274Y) as compared to the wild-type (wt) strain (51833 /wt) could transmit from mallards, which would potentially be exposed to environmentally contaminated environments, to and between chickens, thus posing a potential zoonotic risk of antiviral-resistant AIV. Regardless of whether the virus had the OC-resistant mutation or not, chickens became infected both through experimental infection, and following exposure to infected mallards. We found similar infection patterns between 51833/wt and 51833/H274Y such that, one chicken inoculated with 51833/wt and three chickens inoculated with 51833/H274Y were AIV positive in oropharyngeal samples more than 2 days consecutively, indicating true infection, and one contact chicken exposed to infected mallards was AIV positive in faecal samples for 3 consecutive days (51833/wt) and another contact chicken for 4 consecutive days (51833/H274Y). Importantly, all positive samples from chickens infected with 51833/H274Y retained the NA-H274Y mutation. However, none of the virus strains established sustained transmission in chickens, likely due to insufficient adaptation to the chicken host. Our results demonstrate that an OC-resistant avian influenza virus can transmit from mallards and replicate in chickens. NA-H274Y does not constitute a barrier to interspecies transmission per se, as the resistant virus did not show reduced replicative capacity compared to the wild-type counterpart. Thus, responsible use of oseltamivir and surveillance for resistance development is warranted to limit the risk of an OC-resistant pandemic strain.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza in Birds , Influenza, Human , Humans , Animals , Oseltamivir/pharmacology , Chickens , Influenza A Virus, H1N1 Subtype/genetics , Antiviral Agents/pharmacology , Influenza A virus/genetics , Ducks , Neuraminidase/genetics , Drug Resistance, Viral , Influenza, Human/drug therapy
15.
Sci Rep ; 13(1): 4476, 2023 03 18.
Article in English | MEDLINE | ID: mdl-36934147

ABSTRACT

Exchange of viral segments between one or more influenza virus subtypes can contribute to a shift in virulence and adaptation to new hosts. Among several influenza subtypes, H9N2 is widely circulating in poultry populations worldwide and has the ability to infect humans. Here, we studied the reassortant compatibility between chicken H9N2 with N1-N9 gene segments of wild bird origin, either with an intact or truncated stalk. Naturally occurring amino acid deletions in the NA stalk of the influenza virus can lead to increased virulence in both mallard ducks and chickens. Our findings show extended genetic compatibility between chicken H9Nx gene segments and the wild-bird NA with and without 20 amino acid stalk deletion. Replication kinetics in avian, mammalian and human cell lines revealed that parental chH9N2 and rH9N6 viruses with intact NA-stalk replicated significantly better in avian DF1 cells compared to human A549 cells. After introducing a stalk deletion, an enhanced preference for replication in mammalian and human cell lines could be observed for rH9N2Δ(H6), rH9N6Δ and rH9N9Δ compared to the parental chH9N2 virus. This highlights the potential emergence of novel viruses with variable phenotypic traits, warranting the continuous monitoring of H9N2 and co-circulating subtypes in avian hosts.


Subject(s)
Influenza A Virus, H9N2 Subtype , Influenza in Birds , Animals , Humans , Poultry , Chickens , Neuraminidase/genetics , Neuraminidase/metabolism , Animals, Wild , Amino Acids/metabolism , Phylogeny , Mammals
16.
Pathogens ; 12(2)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36839616

ABSTRACT

Bovine milk and milk products may contain pathogens, antimicrobial resistant bacteria, and antibiotic residues that could harm consumers. We analyzed 282 gram-positive isolates from milk samples from dairy farmers and vendors in Haryana and Assam, India, to assess the prevalence of methicillin-resistant staphylococci using microbiological tests, antibiotic susceptibility testing, and genotyping by PCR. The prevalence of genotypic methicillin resistance in isolates from raw milk samples was 5% [95% confidence interval, CI (3-8)], with 7% [CI (3-10)] in Haryana, in contrast to 2% [CI (0.2-6)] in Assam. The prevalence was the same in isolates from milk samples collected from farmers [5% (n = 6), CI (2-11)] and vendors [5% (n = 7), CI (2-10)]. Methicillin resistance was also observed in 15% of the isolates from pasteurized milk [(n = 3), CI (3-38)]. Two staphylococci harboring a novel mecC gene were identified for the first time in Indian dairy products. The only SCCmec type identified was Type V. The staphylococci with the mecA (n = 11) gene in raw milk were commonly resistant to oxacillin [92%, CI (59-100)] and cefoxitin [74%, CI (39-94)], while the isolates with mecC (n = 2) were resistant to oxacillin (100%) only. All the staphylococci with the mecA (n = 3) gene in pasteurized milk were resistant to both oxacillin and cefoxitin. Our results provided evidence that methicillin-resistant staphylococci occur in dairy products in India with potential public health implications. The state with more intensive dairy systems (Haryana) had higher levels of methicillin-resistant bacteria in milk.

17.
Microorganisms ; 11(1)2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36677450

ABSTRACT

Identifying the species that act as hosts, vectors, and vehicles of vector-borne pathogens is vital for revealing the transmission cycles, dispersal mechanisms, and establishment of vector-borne pathogens in nature. Ticks are common vectors for pathogens causing human and animal diseases, and they transmit a greater variety of pathogenic agents than any other arthropod vector group. Ticks depend on the movements by their vertebrate hosts for their dispersal, and tick species with long feeding periods are more likely to be transported over long distances. Wild birds are commonly parasitized by ticks, and their migration patterns enable the long-distance range expansion of ticks. The African-Palearctic migration system is one of the world's largest migrations systems. African-Western Palearctic birds create natural links between the African, European, and Asian continents when they migrate biannually between breeding grounds in the Palearctic and wintering grounds in Africa and thereby connect different biomes. Climate is an important geographical determinant of ticks, and with global warming, the distribution range and abundance of ticks in the Western Palearctic may increase. The introduction of exotic ticks and their microorganisms into the Western Palearctic via avian vehicles might therefore pose a greater risk for the public and animal health in the future.

18.
Pathogens ; 12(1)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36678438

ABSTRACT

Wild migratory birds have the capability to spread avian influenza virus (AIV) over long distances as well as transmit the virus to domestic birds. In this study, swab and tissue samples were obtained from 190 migratory birds during close surveillance in Egypt in response to the recent outbreaks of the highly pathogenic avian influenza (HPAI) H5N1 virus. The collected samples were tested for a variety of AIV subtypes (H5N1, H9N2, H5N8, and H6N2) as well as other pathogens such as NDV, IBV, ILT, IBDV, and WNV. Among all of the tested samples, the HPAI H5N1 virus was found in six samples; the other samples were found to be negative for all of the tested pathogens. The Egyptian HPAI H5N1 strains shared genetic traits with the HPAI H5N1 strains that are currently being reported in Europe, North America, Asia, and Africa in 2021-2022. Whole genome sequencing revealed markers associated with mammalian adaption and virulence traits among different gene segments, similar to those found in HPAI H5N1 strains detected in Europe and Africa. The detection of the HPAI H5N1 strain of clade 2.3.4.4b in wild birds in Egypt underlines the risk of the introduction of this strain into the local poultry population. Hence, there is reason to be vigilant and continue epidemiological and molecular monitoring of the AIV in close proximity to the domestic-wild bird interface.

20.
Viruses ; 14(9)2022 08 30.
Article in English | MEDLINE | ID: mdl-36146722

ABSTRACT

Vertical transmission (VT) is a phenomenon of vector-borne diseases where a pathogen is transferred from an infected arthropod mother to her offspring. For mosquito-borne flavi- and alphaviruses, VT is commonly viewed as rare; however, both field and experimental studies report on vertical transmission efficiency to a notably varying degree. It is likely that this reflects the different experimental methods used to test vertical transmission efficiency as well as differences between virus-vector combinations. There are very few investigations of the VT of an alphavirus in a Culex vector. Sindbis virus (SINV) is an arthritogenic alphavirus that utilizes Culex species as main vectors both in the summer transmission season and for its persistence over the winter period in northern latitudes. In this study, we investigated the vertical transmission of the SINV in Culex vectors, both in the field and in experimental settings. The detection of SINV RNA in field-collected egg rafts and emerging adults shows that vertical transmission takes place in the field. Experimentally infected females gave rise to adult offspring containing SINV RNA at emergence; however, three to four weeks after emergence none of the offspring contained SINV RNA. This study shows that vertical transmission may be connected to SINV's ability to persist throughout northern winters and also highlights many aspects of viral replication that need further study.


Subject(s)
Culex , Culicidae , Animals , Female , Mosquito Vectors , RNA , Sindbis Virus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...