Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Insect Physiol ; 57(2): 231-45, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21078327

ABSTRACT

Gene silencing through RNA interference (RNAi) has revolutionized the study of gene function, particularly in non-model insects. However, in Lepidoptera (moths and butterflies) RNAi has many times proven to be difficult to achieve. Most of the negative results have been anecdotal and the positive experiments have not been collected in such a way that they are possible to analyze. In this review, we have collected detailed data from more than 150 experiments including all to date published and many unpublished experiments. Despite a large variation in the data, trends that are found are that RNAi is particularly successful in the family Saturniidae and in genes involved in immunity. On the contrary, gene expression in epidermal tissues seems to be most difficult to silence. In addition, gene silencing by feeding dsRNA requires high concentrations for success. Possible causes for the variability of success in RNAi experiments in Lepidoptera are discussed. The review also points to a need to further investigate the mechanism of RNAi in lepidopteran insects and its possible connection to the innate immune response. Our general understanding of RNAi in Lepidoptera will be further aided in the future as our public database at http://insectacentral.org/RNAi will continue to gather information on RNAi experiments.


Subject(s)
Gene Expression Regulation , Lepidoptera/genetics , Lepidoptera/immunology , RNA Interference , Animals , Databases, Genetic , Epidermis/growth & development , Gene Silencing , Immunity, Innate , Insect Proteins/drug effects , Insect Proteins/genetics , Insect Proteins/immunology , Lepidoptera/drug effects , Lepidoptera/growth & development , RNA, Double-Stranded/drug effects , Research Design
2.
Hereditas ; 147(6): 278-82, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21166797

ABSTRACT

The weevil Otiorhynchus sulcatus is a pest species that has spread rapidly to large parts of the world due to human activities. O. sulcatus is extremely polyphagous and found to attack a large number of agricultural and horticultural plant species despite that all individuals are clonal triploid females. I here compare the genetical variation in specimens from various parts of the distribution using both mtDNA and nuclear DNA. The genetical markers employed indicate O. sulcatus to be an evolutionary young clonal species of non-hybrid origin. The extreme polyphagy and ecological success indicate that these weevils may well be a prime example of general purpose genotypes.


Subject(s)
Electron Transport Complex IV/genetics , Genetic Variation , Weevils/genetics , Animals , Female , Genetic Markers , Genotype , Germany , Netherlands , Parthenogenesis , Phylogeny , Triploidy , United Kingdom , United States
4.
Hereditas ; 143(2006): 23-32, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17362330

ABSTRACT

Asexual forms of invertebrates are relatively common. They are often more successful than their sexual progenitors. Especially in insects, the pattern called geographical parthenogenesis shows that asexuality is important in speciation and ecological adaptation. In geographical parthenogenesis the clones have a wider distribution than the sexual forms they originate from. This indicates that they have a broader niche they may utilize successfully. The cause of this apparent success is, however, hard to come by as the term asexuality covers separate phenomena that are hard to disentangle from the mode of reproduction itself. Asexual insects are often polyploid, of hybrid origin, or both and these phenomena have been argued to explain the distribution patterns better than clonality. In this study we survey the literature on arthropods with geographical parthenogenesis in an attempt to clarify what evidence there is for the different phenomena explaining the success of the clonal forms. We focus on the few species where knowledge of distribution of different ploidy levels allows for a distinction of contributions from different phenomena to be made. Our survey support that asexuality is not the only factor underlying the success of all asexuals. Evidence about the importance of a hybrid origin of the clones is found to be meagre as the origin of clones is unknown in the majority of cases. Asexuality, hybridity and polyploidy are intertwined phenomena that each and all may contribute to the success of clonal taxa. Polyploidy, however, emerges as the most parsimonious factor explaining the success of these asexual invertebrate taxa.


Subject(s)
Insecta/genetics , Parthenogenesis , Reproduction, Asexual , Animals , Evolution, Molecular , Geography , Hybridization, Genetic , Polyploidy
SELECTION OF CITATIONS
SEARCH DETAIL
...