Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Opt Lett ; 40(23): 5502-5, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26625036

ABSTRACT

Under high numerical aperture (NA) conditions, a linearly polarized plane wave focuses to a spot that is extended along the E-field vector, but radially polarized light is predicted to form a circular spot whose diameter equals the narrower dimension obtained with linear polarization. This effect provides an opportunity for improved resolution in high-NA microscopy, and here we present a performance study of subsurface two-photon optical-beam-induced current solid-immersion-lens microscopy of a complementary metal-oxide semiconductor integrated circuit, showing a resolution improvement by using radially polarized illumination. By comparing images of the same structural features we show that radial polarization achieves a resolution of 126 nm, while linear polarization achieves resolutions of 122 and 165 nm, depending on the E-field orientation. These results are consistent with the theoretically expected behavior and are supported by high-resolution images which show superior feature definition using radial polarization.

2.
Opt Lett ; 37(10): 1778-80, 2012 May 15.
Article in English | MEDLINE | ID: mdl-22627568

ABSTRACT

We report octave-spanning super-continuum generation in a silica photonic crystal fiber (PCF) pumped by a compact, efficient, mode-locked all-normal dispersion Yb:fiber laser. The laser achieved 45% optical-to-optical efficiency by using an optimized resonator design, producing chirped 750 fs pulses with a repetition rate of 386 MHz and an average power of 605 mW. The chirped pulses were compressed to 110 fs with a loss of only 4% by using multiple reflections on a pair of Gires-Tournois interferometer mirrors, yielding an average power of up to 580 mW. The corresponding peak power was 13.7 kW and produced a super-continuum spectrum spanning from 696-1392 nm.

3.
Water Sci Technol ; 63(4): 660-5, 2011.
Article in English | MEDLINE | ID: mdl-21330711

ABSTRACT

This paper examines the potential of algae biofuel production in conjunction with wastewater treatment. Current technology for algal wastewater treatment uses facultative ponds, however, these ponds have low productivity (∼10 tonnes/ha.y), are not amenable to cultivating single algal species, require chemical flocculation or other expensive processes for algal harvest, and do not provide consistent nutrient removal. Shallow, paddlewheel-mixed high rate algal ponds (HRAPs) have much higher productivities (∼30 tonnes/ha.y) and promote bioflocculation settling which may provide low-cost algal harvest. Moreover, HRAP algae are carbon-limited and daytime addition of CO(2) has, under suitable climatic conditions, the potential to double production (to ∼60 tonnes/ha.y), improve bioflocculation algal harvest, and enhance wastewater nutrient removal. Algae biofuels (e.g. biogas, ethanol, biodiesel and crude bio-oil), could be produced from the algae harvested from wastewater HRAPs, The wastewater treatment function would cover the capital and operation costs of algal production, with biofuel and recovered nutrient fertilizer being by-products. Greenhouse gas abatement results from both the production of the biofuels and the savings in energy consumption compared to electromechanical treatment processes. However, to achieve these benefits, further research is required, particularly the large-scale demonstration of wastewater treatment HRAP algal production and harvest.


Subject(s)
Biofuels , Eukaryota/metabolism , Waste Disposal, Fluid/methods , Agriculture , Carbon Dioxide/chemistry , Electricity , Ethanol/metabolism , Methane/metabolism
4.
Bioresour Technol ; 97(14): 1709-15, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16226887

ABSTRACT

In this investigation, diurnal variations in contaminant removal in high rate ponds (HRP) treating urban wastewater were evaluated. Two experimental HRPs (surface area 1.54 m2 and depth 0.3 m), each with a clarifier in series (surface area 0.025 m2), were operated in parallel with different hydraulic retention times (3-10 days) but with the same environmental conditions over a period of one year. The operating strategies adopted only yielded a significant overall difference in removal between the two HRPs for nutrients. Effluent total suspended solids and chemical oxygen demand were slightly higher at midday than at dawn, while for total nitrogen and total phosphorous the concentrations were slightly higher at dawn. All these differences were related to the diurnal changes of DO and pH. The main conclusion of this work is that the diurnal variations of the contaminant concentrations in HRPs do not seriously affect their reliability in treating wastewater.


Subject(s)
Circadian Rhythm , Eukaryota/metabolism , Genetic Variation , Waste Disposal, Fluid/methods , Water Purification/methods , Biomass , Cities , Eukaryota/genetics , Facility Design and Construction , Hydrogen-Ion Concentration , Nitrogen/analysis , Nitrogen/metabolism , Oxygen/analysis , Oxygen/metabolism , Photosynthesis , Time Factors , Water Pollution/prevention & control
5.
J Microsc ; 214(Pt 3): 246-51, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15157192

ABSTRACT

Circuit editing of integrated circuit (IC) devices fabricated in 100-nm and smaller technologies has moved IC microsurgery into nanosurgery. Although the dimensions are challenging, an additional challenge is to mill the dielectric materials that are employed controllably. There are interesting biological similarities as carbon content and porosity increase in order to minimize the dielectric constant. These porous organic materials are extremely delicate and are readily carbonized under the ion beam. Besides minimizing carbonization, the etching of these materials must be minimized during the removal of a metallized area. A further challenge has been caused by the continuing tightening of fabrication specifications; the dielectric materials are dispersed (although not randomly) within the metallizations in order to reduce variations during a planarization process. In addition, to improve planarization tolerances, dummy metallizations are placed in regions where the need is only mechanical and not electrical. Neither of these 'extra' structures is readily available to assist in edit planning. To address these dielectrics and the structures in which they are found, several techniques--including chemistries--have been developed. Methods to increase the etching of metallization relative to the dielectric are reviewed, including chemistries that improve the selectivity of copper to dielectric.

6.
Water Sci Technol ; 48(2): 299-305, 2003.
Article in English | MEDLINE | ID: mdl-14510224

ABSTRACT

Monthly Maximum Discharge Limits (MMDL) have been established for selenium in irrigation drainage by the State of California and the U.S. Environmental Protection Agency following observations of avian teratogenesis at the Kesterson Reservoir in the San Joaquin Valley of California. As a result of these and other adverse effects, farmers and drainage districts on the western side of the San Joaquin Valley must reduce selenium concentrations in irrigation drainage discharged to the San Joaquin River. Drainage treatment will be required in the near future to meet existing MMDL and future Total Maximum Discharge Limits (TMDL) for the San Joaquin River. A 0.4-hectare Algal Bacterial Selenium Removal (ABSR) Facility was designed and constructed at the Panoche Drainage District in 1995 and 1996 using the Advanced Integrated Wastewater Pond Systems or AIWPS Technology. Each of two physically identical systems combined a Reduction Pond (RP) with a shallow, peripheral algal High Rate Pond (HRP). A Dissolved Air Flotation (DAF) unit and a slow sand filter were used to remove particulate selenium from the effluent of each system. The two systems were operated under different modes of operation and the bacterial substrate varied in each system. The rates of nitrate and selenium removal were compared. Microalgae were harvested using DAF and used as a carbon-rich substrate for nitrate- and selenate-reducing bacteria. Mass removals of total soluble selenium of 77% or greater were achieved over a three-year period. Nitrate and selenate were removed by assimiliatory and dissimiliatory bacterial reduction, and nitrate was also removed by algal assimilation. The final removal of particulate selenium is the focus of ongoing investigations. The removal of particulate selenium is expected to increase the overall removal of selenium to greater than 90% and would allow farmers and drainage districts to discharge irrigation drainage in compliance with regulatory discharge limits.


Subject(s)
Nitrates/isolation & purification , Selenium/isolation & purification , Waste Disposal, Fluid/methods , Water Pollution/prevention & control , Agriculture , Bacteria , Bioreactors , California , Conservation of Natural Resources , Eukaryota , Water Supply
7.
Water Sci Technol ; 45(1): 117-25, 2002.
Article in English | MEDLINE | ID: mdl-11833725

ABSTRACT

The sustainability of wastewater reclamation and reuse schemes is often limited by the increase in salt concentration that occurs with each water use. In this pilot study, we show that the cost of reclaiming wastewater and removing salt can be dramatically decreased by integrating recent advances in wastewater pond design, solids separation equipment, and membrane technology. Effluent from an AIWPS Facility was clarified in a Krofta Supracell Dissolved Air Flotation (DAF) unit and a Slow Sand Filter (SSF) prior to final treatment in an Expertise S.r.l. reverse osmosis (RO) unit. The ponds of the AIWPS Facility removed an average of 82% of soluble BOD and 80% of soluble nitrogen. Following clarification, filtration, and RO treatment, the pollutant removals were > 99% for soluble BOD, > 99% for soluble nitrogen, and 98% for TDS. Based on membrane fouling rate data, the cleaning interval for the RO membranes in a full-scale AIWPS-RO Facility would be over 100 days. This interval is on par with that typically seen in full-scale reclamation facilities treating secondary activated sludge effluent with microfiltration prior to reverse osmosis. A 4-MLD AIWPS-RO Facility is expected to produce permeate water at substantially lower cost and lower energy consumption (US $698 and 443 kWh per million liters treated) than a system of equal capacity using conventional activated sludge secondary treatment followed by microfiltration and reverse osmosis (US $1274 and 911 kWh per million litres treated). This cost and energy differential is attributable to the lower capital and operating expenses of the AIWPS Technology in comparison with activated sludge.


Subject(s)
Conservation of Natural Resources/economics , Membranes, Artificial , Waste Disposal, Fluid/economics , Water Purification/economics , Water Supply , Cost Control , Filtration , Nitrogen/chemistry , Nitrogen/isolation & purification , Osmosis , Pilot Projects , Sewage , Silicon Dioxide , Sodium Chloride/isolation & purification , Solubility , Waste Disposal, Fluid/methods , Water Purification/methods
8.
J Comp Neurol ; 294(2): 161-78, 1990 Apr 08.
Article in English | MEDLINE | ID: mdl-1692042

ABSTRACT

Immunocytochemical analysis of the thoraco-abdominal ganglia of the flies Drosophila melanogaster and Calliphora vomitoria revealed neurons displaying substance P- (SPLI), FMRFamide-(FLI), and cholecystokinin-like (CCKLI) immunoreactivity. It could be demonstrated that a number of neurons contain peptides reacting with antisera against all the three types of substances, others were either FLI or CCKLI alone. No neurons displayed only SPLI. Instead, the total number (about 30) of SPLI neurons constitute a subpopulation of the FLI/CCKLI neurons. Many of the identifiable immunoreactive neurons seem to be homologous in the two fly species. One set of six large neurons, termed ventral thoracic neurosecretory neurons (VTNCs), are among those that are SPLI, FLI, and CCKLI in both Drosophila and Calliphora. With the present immunocytochemical technique, the detailed morphology of the VTNCs could be resolved. These neurosecretory neurons supply the entire dorsal neural sheath of the thoraco-abdominal ganglia with terminals, thus forming an extensive neurohaemal area. The VTNCs also have processes connecting the thoracic neuromeres to the cephalic suboesophageal ganglion, as well as extensive arborizations in the thoracic ganglia, suggesting an important role in integrating and/or regulating large portions of the central nervous system, in addition to their neurosecretory function. Most of the other SPLI, FLI, and CCKLI neurons in the thoraco-abdominal ganglia seem to be interneurons. However, there are four FLI neurons that appear to be efferents innervating the hindgut and a few abdominal FLI and CCKLI neurons may be additional neurosecretory cells. From the present study it appears as if neuropeptides related to substance P, FMRFamide and CCK have roles as neurotransmitters/neuromodulators and circulating neurohormones in Drosophila and Calliphora.


Subject(s)
Cholecystokinin/metabolism , Diptera/metabolism , Gastrins/metabolism , Nervous System/metabolism , Neuropeptides/metabolism , Substance P/metabolism , Animals , Diptera/physiology , Drosophila melanogaster , FMRFamide , Nervous System/cytology
9.
Brain Res ; 507(2): 225-33, 1990 Jan 22.
Article in English | MEDLINE | ID: mdl-1692499

ABSTRACT

With an antiserum against substance P a small number of neurons could be resolved in great detail in the nervous system of the fruitfly Drosophila melanogaster. In the brain, 10 substance P-like immunoreactive (SPLI) neurons were individually identified. Two of these form extensive bilateral connections with dorsal and ventral protocerebral neuropil. Another two neurons have cell bodies located ventrally in the subesophageal ganglion and processes throughout subesophageal neuropil. In the thoracico-abdominal ganglia 10 SPLI neurons could be identified. Eight of these have large cell bodies located ventrally in thoracic ganglia and two have small cell bodies located posteriorly in the abdominal ganglia. Six of the 8 thoracic SPLI neurons could be resolved in detail and were found to form: (1) processes in dorsal thoracic and abdominal neuropil as well as processes running through the cervical connective into the subesophageal ganglia; and (2) processes running into the dorsal neural sheath of the thoracic ganglia. The latter processes form an extensive network of varicose terminals over the thoracic ganglia. Our results indicate that a substance P-like neuropeptide can act as a neurohormone released into the circulation from terminals in the neural sheath as well as a neurotransmitter/neuromodulator released by interneurons in the brain.


Subject(s)
Drosophila melanogaster/metabolism , Nervous System/metabolism , Substance P/metabolism , Animals , Immunohistochemistry , Nervous System/cytology
SELECTION OF CITATIONS
SEARCH DETAIL