Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Infect Immun ; 78(5): 1924-30, 2010 May.
Article in English | MEDLINE | ID: mdl-20145098

ABSTRACT

About 500 million cases of malaria occur annually. However, a substantial number of patients who actually have relapsing fever (RF) Borrelia infection can be misdiagnosed with malaria due to similar manifestations and geographic distributions of the two diseases. More alarmingly, a high prevalence of concomitant infections with malaria and RF Borrelia has been reported. Therefore, we used a mouse model to study the effects of such mixed infection. We observed a 21-fold increase in spirochete titers, whereas the numbers of parasitized erythrocytes were reduced 15-fold. This may be explained by polarization of the host immune response toward the intracellular malaria parasite, resulting in unaffected extracellular spirochetes and hosts that succumb to sepsis. Mixed infection also resulted in severe malaria anemia with low hemoglobin levels, even though the parasite counts were low. Overall, coinfected animals had a higher fatality rate and shorter time to death than those with either malaria or RF single infection. Furthermore, secondary malaria infection reactivated a quiescent RF brain infection, which is the first evidence of a clinically and biologically relevant cue for reactivation of RF Borrelia infection. Our study highlights the importance of investigating concomitant infections in vivo to elucidate the immune responses that are involved in the clinical outcome.


Subject(s)
Malaria/complications , Malaria/pathology , Relapsing Fever/complications , Relapsing Fever/pathology , Anemia , Animals , Borrelia/isolation & purification , Colony Count, Microbial , Erythrocytes/parasitology , Male , Mice , Mice, Inbred BALB C , Parasitemia , Plasmodium berghei/isolation & purification , Sepsis , Survival Analysis
2.
PLoS Negl Trop Dis ; 3(9): e522, 2009 Sep 29.
Article in English | MEDLINE | ID: mdl-19787030

ABSTRACT

Louse-borne relapsing fever (LBRF) borreliosis is caused by Borrelia recurrentis, and it is a deadly although treatable disease that is endemic in the Horn of Africa but has epidemic potential. Research on LBRF has been severely hampered because successful infection with B. recurrentis has been achieved only in primates (i.e., not in other laboratory or domestic animals). Here, we present the first non-primate animal model of LBRF, using SCID (-B, -T cells) and SCID BEIGE (-B, -T, -NK cells) immunocompromised mice. These animals were infected with B. recurrentis A11 or A17, or with B. duttonii 1120K3 as controls. B. recurrentis caused a relatively mild but persistent infection in SCID and SCID BEIGE mice, but did not proliferate in NUDE (-T) and BALB/c (wild-type) mice. B. duttonii was infectious but not lethal in all animals. These findings demonstrate that the immune response can limit relapsing fever even in the absence of humoral defense mechanisms. To study the significance of phagocytic cells in this context, we induced systemic depletion of such cells in the experimental mice by injecting them with clodronate liposomes, which resulted in uncontrolled B. duttonii growth and a one-hundred-fold increase in B. recurrentis titers in blood. This observation highlights the role of macrophages and other phagocytes in controlling relapsing fever infection. B. recurrentis evolved from B. duttonii to become a primate-specific pathogen that has lost the ability to infect immunocompetent rodents, probably through genetic degeneration. Here, we describe a novel animal model of B. recurrentis based on B- and T-cell-deficient mice, which we believe will be very valuable in future research on LBRF. Our study also reveals the importance of B-cells and phagocytes in controlling relapsing fever infection.

3.
Microb Pathog ; 44(3): 262-4, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18083325

ABSTRACT

Like several other spirochetes, relapsing fever Borrelia can cause persistent infection of the central nervous system (CNS). By treating mice harboring residual Borrelia duttonii brain infection with the bacteriocidal, cell wall inhibiting antibiotic ceftriaxone, bacteria were cleared from the brain. This shows that the residual infection is not latent but actively growing.


Subject(s)
Borrelia/drug effects , Borrelia/pathogenicity , Brain/microbiology , Ceftriaxone/pharmacology , Relapsing Fever/microbiology , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Borrelia/genetics , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...