Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Curr Biol ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38781954

ABSTRACT

Inflorescence architecture and crop productivity are often tightly coupled in our major cereal crops. However, the underlying genetic mechanisms controlling cereal inflorescence development remain poorly understood. Here, we identified recessive alleles of barley (Hordeum vulgare L.) HvALOG1 (Arabidopsis thaliana LSH1 and Oryza G1) that produce non-canonical extra spikelets and fused glumes abaxially to the central spikelet from the upper-mid portion until the tip of the inflorescence. Notably, we found that HvALOG1 exhibits a boundary-specific expression pattern that specifically excludes reproductive meristems, implying the involvement of previously proposed localized signaling centers for branch regulation. Importantly, during early spikelet formation, non-cell-autonomous signals associated with HvALOG1 expression may specify spikelet meristem determinacy, while boundary formation of floret organs appears to be coordinated in a cell-autonomous manner. Moreover, barley ALOG family members synergistically modulate inflorescence morphology, with HvALOG1 predominantly governing meristem maintenance and floral organ development. We further propose that spatiotemporal redundancies of expressed HvALOG members specifically in the basal inflorescence may be accountable for proper patterning of spikelet formation in mutant plants. Our research offers new perspectives on regulatory signaling roles of ALOG transcription factors during the development of reproductive meristems in cereal inflorescences.

2.
Hereditas ; 161(1): 11, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38454479

ABSTRACT

BACKGROUND: Mutants have had a fundamental impact upon scientific and applied genetics. They have paved the way for the molecular and genomic era, and most of today's crop plants are derived from breeding programs involving mutagenic treatments. RESULTS: Barley (Hordeum vulgare L.) is one of the most widely grown cereals in the world and has a long history as a crop plant. Barley breeding started more than 100 years ago and large breeding programs have collected and generated a wide range of natural and induced mutants, which often were deposited in genebanks around the world. In recent years, an increased interest in genetic diversity has brought many historic mutants into focus because the collections are regarded as valuable resources for understanding the genetic control of barley biology and barley breeding. The increased interest has been fueled also by recent advances in genomic research, which provided new tools and possibilities to analyze and reveal the genetic diversity of mutant collections. CONCLUSION: Since detailed knowledge about phenotypic characters of the mutants is the key to success of genetic and genomic studies, we here provide a comprehensive description of mostly morphological barley mutants. The review is closely linked to the International Database for Barley Genes and Barley Genetic Stocks ( bgs.nordgen.org ) where further details and additional images of each mutant described in this review can be found.


Subject(s)
Hordeum , Hordeum/genetics , Plant Breeding , Mutagenesis , Genomics
3.
Sci Adv ; 9(9): eadd0324, 2023 03 03.
Article in English | MEDLINE | ID: mdl-36867700

ABSTRACT

Flowering plants with indeterminate inflorescences often produce more floral structures than they require. We found that floral primordia initiations in barley (Hordeum vulgare L.) are molecularly decoupled from their maturation into grains. While initiation is dominated by flowering-time genes, floral growth is specified by light signaling, chloroplast, and vascular developmental programs orchestrated by barley CCT MOTIF FAMILY 4 (HvCMF4), which is expressed in the inflorescence vasculature. Consequently, mutations in HvCMF4 increase primordia death and pollination failure, mainly through reducing rachis greening and limiting plastidial energy supply to developing heterotrophic floral tissues. We propose that HvCMF4 is a sensory factor for light that acts in connection with the vascular-localized circadian clock to coordinate floral initiation and survival. Notably, stacking beneficial alleles for both primordia number and survival provides positive implications on grain production. Our findings provide insights into the molecular underpinnings of grain number determination in cereal crops.


Subject(s)
Edible Grain , Hordeum , Crops, Agricultural , Alleles , Chloroplasts
4.
Planta ; 254(1): 9, 2021 Jun 20.
Article in English | MEDLINE | ID: mdl-34148131

ABSTRACT

MAIN CONCLUSION: Both mutant ert-c.1 and ert-d.7 carry T2-T3 translocations in the Ert-c gene. Principal coordinate analyses revealed the translocation types and translocation breakpoints. Mutant ert-d.7 is an Ert-c Ert-d double mutant. Mutations in the Ert-c and Ert-d loci are among the most common barley mutations affecting plant architecture. The mutants have various degrees of erect and compact spikes, often accompanied with short and stiff culms. In the current study, complementation tests, linkage mapping, principal coordinate analyses and fine mapping were conducted. We conclude that the original ert-d.7 mutant does not only carry an ert-d mutation but also an ert-c mutation. Combined, mutations in Ert-c and Ert-d cause a pyramid-dense spike phenotype, whereas mutations in only Ert-c or Ert-d give a pyramid and dense phenotype, respectively. Associations between the Ert-c gene and T2-T3 translocations were detected in both mutant ert-c.1 and ert-d.7. Different genetic association patterns indicate different translocation breakpoints in these two mutants. Principal coordinate analysis based on genetic distance and screening of recombinants from all four ends of polymorphic regions was an efficient way to narrow down the region of interest in translocation-involved populations. The Ert-c gene was mapped to the marker interval of 2_0801to1_0224 on 3HL near the centromere. The results illuminate a complex connection between two single genes having additive effects on barley spike architecture and will facilitate the identification of the Ert-c and Ert-d genes.


Subject(s)
Hordeum , Base Sequence , Chromosome Mapping , Hordeum/genetics , Mutation , Phenotype
5.
Nat Commun ; 11(1): 5138, 2020 10 12.
Article in English | MEDLINE | ID: mdl-33046693

ABSTRACT

Grasses have varying inflorescence shapes; however, little is known about the genetic mechanisms specifying such shapes among tribes. Here, we identify the grass-specific TCP transcription factor COMPOSITUM 1 (COM1) expressing in inflorescence meristematic boundaries of different grasses. COM1 specifies branch-inhibition in barley (Triticeae) versus branch-formation in non-Triticeae grasses. Analyses of cell size, cell walls and transcripts reveal barley COM1 regulates cell growth, thereby affecting cell wall properties and signaling specifically in meristematic boundaries to establish identity of adjacent meristems. COM1 acts upstream of the boundary gene Liguleless1 and confers meristem identity partially independent of the COM2 pathway. Furthermore, COM1 is subject to purifying natural selection, thereby contributing to specification of the spike inflorescence shape. This meristem identity pathway has conceptual implications for both inflorescence evolution and molecular breeding in Triticeae.


Subject(s)
Hordeum/metabolism , Inflorescence/growth & development , Meristem/metabolism , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Hordeum/genetics , Hordeum/growth & development , Inflorescence/genetics , Inflorescence/metabolism , Meristem/genetics , Meristem/growth & development , Plant Proteins/genetics , Signal Transduction
6.
Hereditas ; 155: 10, 2018.
Article in English | MEDLINE | ID: mdl-28878591

ABSTRACT

BACKGROUND: Short-culm mutants have been widely used in breeding programs to increase lodging resistance. In barley (Hordeum vulgare L.), several hundreds of short-culm mutants have been isolated over the years. The objective of the present study was to identify the Brachytic1 (Brh1) semi-dwarfing gene and to test its effect on yield and malting quality. RESULTS: Double-haploid lines generated through a cross between a brh1.a mutant and the European elite malting cultivar Quench, showed good malting quality but a decrease in yield. Especially the activities of the starch degrading enzymes ß-amylase and free limit dextrinase were high. A syntenic approach comparing markers in barley to those in rice (Oryza sativa L.), sorghum (Sorghum bicolor Moench) and brachypodium (Brachypodium distachyon P. Beauv) helped us to identify Brh1 as an orthologue of rice D1 encoding the Gα subunit of a heterotrimeric G protein. We demonstrated that Brh1 is allelic to Ari-m. Sixteen different mutant alleles were described at the DNA level. CONCLUSIONS: Mutants in the Brh1 locus are deficient in the Gα subunit of a heterotrimeric G protein, which shows that heterotrimeric G proteins are important regulators of culm length in barley. Mutant alleles do not have any major negative effects on malting quality.


Subject(s)
Heterotrimeric GTP-Binding Proteins/genetics , Hordeum/genetics , Plant Proteins/genetics , Alleles , Hordeum/growth & development , Mutation , Phenotype , Plant Breeding
7.
Plant Physiol ; 175(4): 1720-1731, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29101279

ABSTRACT

Increasing grain yield is an endless challenge for cereal crop breeding. In barley (Hordeum vulgare), grain number is controlled mainly by Six-rowed spike 1 (Vrs1), which encodes a homeodomain leucine zipper class I transcription factor. However, little is known about the genetic basis of grain size. Here, we show that extreme suppression of lateral florets contributes to enlarged grains in deficiens barley. Through a combination of fine-mapping and resequencing of deficiens mutants, we have identified that a single amino acid substitution at a putative phosphorylation site in VRS1 is responsible for the deficiens phenotype. deficiens mutant alleles confer an increase in grain size, a reduction in plant height, and a significant increase in thousand grain weight in contemporary cultivated germplasm. Haplotype analysis revealed that barley carrying the deficiens allele (Vrs1.t1) originated from two-rowed types carrying the Vrs1.b2 allele, predominantly found in germplasm from northern Africa. In situ hybridization of histone H4, a marker for cell cycle or proliferation, showed weaker expression in the lateral spikelets compared with central spikelets in deficiens Transcriptome analysis revealed that a number of histone superfamily genes were up-regulated in the deficiens mutant, suggesting that enhanced cell proliferation in the central spikelet may contribute to larger grains. Our data suggest that grain yield can be improved by suppressing the development of specific organs that are not positively involved in sink/source relationships.


Subject(s)
Gene Expression Regulation, Plant/physiology , Hordeum/physiology , Plant Proteins/metabolism , Transcription Factors/metabolism , Amino Acid Sequence , Amino Acid Substitution , Breeding , Chromosome Mapping , Chromosomes, Plant/genetics , Genetic Markers , Genome-Wide Association Study , Haplotypes , Hordeum/genetics , Mutation , Plant Development/genetics , Plant Development/physiology , Plant Proteins/chemistry , Plant Proteins/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Plant/genetics , RNA, Plant/metabolism , Transcription, Genetic
8.
Plant Direct ; 1(5): e00025, 2017 Nov.
Article in English | MEDLINE | ID: mdl-31245672

ABSTRACT

The hydrophobic cuticle covers the surface of the most aerial organs of land plants. The barley mutant eceriferum-zv (cer-zv), which is hypersensitive to drought, is unable to accumulate a sufficient quantity of cutin in its leaf cuticle. The mutated locus has been mapped to a 0.02 cM segment in the pericentromeric region of chromosome 4H. As a map-based cloning approach to isolate the gene was therefore considered unlikely to be feasible, a comparison was instead made between the transcriptomes of the mutant and the wild type. In conjunction with extant genomic information, on the basis of predicted functionality, only two genes were considered likely to encode a product associated with cutin formation. When eight independent cer-zv mutant alleles were resequenced with respect to the two candidate genes, it was confirmed that the gene underlying the mutation in each allele encodes a Gly-Asp-Ser-Leu (GDSL)-motif esterase/acyltransferase/lipase. The gene was transcribed in the epidermis, and its product was exclusively deposited in cell wall at the boundary of the cuticle in the leaf elongation zone, coinciding with the major site of cutin deposition. CER-ZV is speculated to function in the deposition of cutin polymer. Its homologs were found in green algae, moss, and euphyllophytes, indicating that it is highly conserved in plant kingdom.

9.
Nat Genet ; 49(1): 157-161, 2017 01.
Article in English | MEDLINE | ID: mdl-27841879

ABSTRACT

Plant architecture has clear agronomic and economic implications for crops such as wheat and barley, as it is a critical factor for determining grain yield. Despite this, only limited molecular information is available about how grain-bearing inflorescences, called spikes, are formed and maintain their regular, distichous pattern. Here we elucidate the molecular and hormonal role of Six-rowed spike 2 (Vrs2), which encodes a SHORT INTERNODES (SHI) transcriptional regulator during barley inflorescence and shoot development. We show that Vrs2 is specifically involved in floral organ patterning and phase duration by maintaining hormonal homeostasis and gradients during normal spike development and similarly influences plant stature traits. Furthermore, we establish a link between the SHI protein family and sucrose metabolism during organ growth and development that may have implications for deeper molecular insights into inflorescence and plant architecture in crops.


Subject(s)
Gene Expression Regulation, Plant/drug effects , Hordeum/growth & development , Inflorescence/growth & development , Meristem/growth & development , Plant Growth Regulators/pharmacology , Plant Proteins/genetics , Genetic Variation , Hordeum/drug effects , Hordeum/genetics , Inflorescence/drug effects , Inflorescence/genetics , Meristem/drug effects , Meristem/genetics , Phenotype , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Proteins/metabolism , Plant Shoots/genetics , Plant Shoots/growth & development , Transcriptome
10.
Plant Mol Biol ; 88(6): 609-26, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26228300

ABSTRACT

The erectoides-m anthocyanin-less 1 (ert-m ant1) double mutants are among the very few examples of induced double mutants in barley. From phenotypic observations of mutant plants it is known that the Ert-m gene product regulates plant architecture whereas the Ant1 gene product is involved in anthocyanin biosynthesis. We used a near-isogenic line of the cultivar Bowman, BW316 (ert-m.34), to create four F2-mapping populations by crosses to the barley cultivars Barke, Morex, Bowman and Quench. We phenotyped and genotyped 460 plants, allowing the ert-m mutation to be mapped to an interval of 4.7 cM on the short arm of barley chromosome 7H. Bioinformatic searches identified 21 candidate gene models in the mapped region. One gene was orthologous to a regulator of Arabidopsis thaliana plant architecture, ERECTA, encoding a leucine-rich repeat receptor-like kinase. Sequencing of HvERECTA in barley ert-m mutant accessions identified severe DNA changes in 15 mutants, including full gene deletions in ert-m.40 and ert-m.64. Both deletions, additionally causing anthocyanin deficiency, were found to stretch over a large region including two putative candidate genes for the anthocyanin biosynthesis locus Ant1. Analyses of ert-m and ant1 single- and double-deletion mutants suggest Ant1 as a closely linked gene encoding a R2R3 myeloblastosis transcription factor.


Subject(s)
Amino Acid Transport Systems, Neutral/metabolism , Anthocyanins/biosynthesis , Genetic Linkage , Hordeum/metabolism , Plant Proteins/metabolism , Amino Acid Transport Systems, Neutral/genetics , Anthocyanins/genetics , Anthocyanins/metabolism , Cloning, Molecular , Hordeum/anatomy & histology , Hordeum/genetics , Mutation , Plant Proteins/genetics
11.
Genetics ; 201(1): 155-65, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26156223

ABSTRACT

Inflorescences of the tribe Triticeae, which includes wheat (Triticum sp. L.) and barley (Hordeum vulgare L.) are characterized by sessile spikelets directly borne on the main axis, thus forming a branchless spike. 'Compositum-Barley' and tetraploid 'Miracle-Wheat' (T. turgidum convar. compositum (L.f.) Filat.) display noncanonical spike-branching in which spikelets are replaced by lateral branch-like structures resembling small-sized secondary spikes. As a result of this branch formation 'Miracle-Wheat' produces significantly more grains per spike, leading to higher spike yield. In this study, we first isolated the gene underlying spike-branching in 'Compositum-Barley,' i.e., compositum 2 (com2). Moreover, we found that COM2 is orthologous to the branched head(t) (bh(t)) locus regulating spike branching in tetraploid 'Miracle-Wheat.' Both genes possess orthologs with similar functions in maize BRANCHED SILKLESS 1 (BD1) and rice FRIZZY PANICLE/BRANCHED FLORETLESS 1 (FZP/BFL1) encoding AP2/ERF transcription factors. Sequence analysis of the bh(t) locus in a collection of mutant and wild-type tetraploid wheat accessions revealed that a single amino acid substitution in the DNA-binding domain gave rise to the domestication of 'Miracle-Wheat.' mRNA in situ hybridization, microarray experiments, and independent qRT-PCR validation analyses revealed that the branch repression pathway in barley is governed through the spike architecture gene Six-rowed spike 4 regulating COM2 expression, while HvIDS1 (barley ortholog of maize INDETERMINATE SPIKELET 1) is a putative downstream target of COM2. These findings presented here provide new insights into the genetic basis of spike architecture in Triticeae, and have disclosed new targets for genetic manipulations aiming at boosting wheat's yield potential.


Subject(s)
Hordeum/genetics , Plant Proteins/genetics , Transcription Factors/genetics , Triticum/genetics , Chromosome Mapping , Chromosomes, Plant , Gene Expression Profiling , Gene Expression Regulation, Plant , Hordeum/ultrastructure , Sequence Homology, Nucleic Acid , Triticum/ultrastructure
12.
Hereditas ; 151(6): 123-31, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25491643

ABSTRACT

In 1928, the Swedish geneticists Hermann Nilsson-Ehle and Åke Gustafsson started on their suggestion experiments with induced mutations using the barley crop. In 1953, at the instigation of the Swedish Government, the 'Group for Theoretical and Applied Mutation Research' was established. Its aim was to study basic research problems in order to influence and improve methods for breeding cultivated plants. The research was non-commercial, even if some mutants were of practical importance. The peaks of activities occurred during the 1950s, 1960s and 1970s. Applying X-rays and UV-irradiation very soon the first chlorophyll mutations were obtained followed by the first viable mutations 'Erectoides'. Soon the X-ray experiments expanded with other types of irradiation such as neutrons etc. and finally with chemical mutagens, starting with mustard gas and concluding with the sodium azide. The research brought a wealth of observations of general biological importance, high increased mutation frequencies, difference in the mutation spectrum and to direct mutagenesis for specific genes. A rather large collection of morphological and physiological mutations, about 12 000 different mutant alleles, with a very broad variation were collected and incorporated into the Nordic Genetic Resource Center (NordGen) Sweden. Barley, the main experimental crop has become one of the few higher plants in which biochemical genetics and molecular biological studies are now feasible. The collection is an outstanding material for mapping genes and investigating the barley genome. Several characters have been studied and analyzed in more detail and are presented in this historical review.


Subject(s)
Genetics/history , Hordeum/genetics , Breeding/history , Chromosome Mapping , DNA, Plant/genetics , Genetic Variation , History, 20th Century , Mutagenesis , Mutation , Sweden
13.
Plant Physiol ; 166(4): 1912-27, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25332507

ABSTRACT

Reduced plant height and culm robustness are quantitative characteristics important for assuring cereal crop yield and quality under adverse weather conditions. A very limited number of short-culm mutant alleles were introduced into commercial crop cultivars during the Green Revolution. We identified phenotypic traits, including sturdy culm, specific for deficiencies in brassinosteroid biosynthesis and signaling in semidwarf mutants of barley (Hordeum vulgare). This set of characteristic traits was explored to perform a phenotypic screen of near-isogenic short-culm mutant lines from the brachytic, breviaristatum, dense spike, erectoides, semibrachytic, semidwarf, and slender dwarf mutant groups. In silico mapping of brassinosteroid-related genes in the barley genome in combination with sequencing of barley mutant lines assigned more than 20 historic mutants to three brassinosteroid-biosynthesis genes (BRASSINOSTEROID-6-OXIDASE, CONSTITUTIVE PHOTOMORPHOGENIC DWARF, and DIMINUTO) and one brassinosteroid-signaling gene (BRASSINOSTEROID-INSENSITIVE1 [HvBRI1]). Analyses of F2 and M2 populations, allelic crosses, and modeling of nonsynonymous amino acid exchanges in protein crystal structures gave a further understanding of the control of barley plant architecture and sturdiness by brassinosteroid-related genes. Alternatives to the widely used but highly temperature-sensitive uzu1.a allele of HvBRI1 represent potential genetic building blocks for breeding strategies with sturdy and climate-tolerant barley cultivars.


Subject(s)
Brassinosteroids/metabolism , Gene Expression Regulation, Plant , Hordeum/genetics , Alleles , Amino Acids , Base Sequence , Chromosome Mapping , Computer Simulation , Edible Grain , Hordeum/growth & development , Hordeum/metabolism , Models, Structural , Molecular Sequence Data , Mutation , Phenotype , Sequence Analysis, DNA , Signal Transduction , Temperature , Weather
14.
Proc Natl Acad Sci U S A ; 110(32): 13198-203, 2013 Aug 06.
Article in English | MEDLINE | ID: mdl-23878219

ABSTRACT

Inflorescence architecture of barley (Hordeum vulgare L.) is common among the Triticeae species, which bear one to three single-flowered spikelets at each rachis internode. Triple spikelet meristem is one of the unique features of barley spikes, in which three spikelets (one central and two lateral spikelets) are produced at each rachis internode. Fertility of the lateral spikelets at triple spikelet meristem gives row-type identity to barley spikes. Six-rowed spikes show fertile lateral spikelets and produce increased grain yield per spike, compared with two-rowed spikes with sterile lateral spikelets. Thus, far, two loci governing the row-type phenotype were isolated in barley that include Six-rowed spike1 (Vrs1) and Intermedium-C. In the present study, we isolated Six-rowed spike4 (Vrs4), a barley ortholog of the maize (Zea mays L.) inflorescence architecture gene RAMOSA2 (RA2). Eighteen coding mutations in barley RA2 (HvRA2) were specifically associated with lateral spikelet fertility and loss of spikelet determinacy. Expression analyses through mRNA in situ hybridization and microarray showed that Vrs4 (HvRA2) controls the row-type pathway through Vrs1 (HvHox1), a negative regulator of lateral spikelet fertility in barley. Moreover, Vrs4 may also regulate transcripts of barley SISTER OF RAMOSA3 (HvSRA), a putative trehalose-6-phosphate phosphatase involved in trehalose-6-phosphate homeostasis implicated to control spikelet determinacy. Our expression data illustrated that, although RA2 is conserved among different grass species, its down-stream target genes appear to be modified in barley and possibly other species of tribe Triticeae.


Subject(s)
Gene Expression Regulation, Plant , Hordeum/genetics , Inflorescence/genetics , Plant Proteins/genetics , Amino Acid Sequence , Base Sequence , Chromosome Mapping , Chromosomes, Plant/genetics , Fertility/genetics , Gene Expression Profiling , Haplotypes , Hordeum/metabolism , Hordeum/ultrastructure , Inflorescence/metabolism , Inflorescence/ultrastructure , Microscopy, Electron, Scanning , Molecular Sequence Data , Mutation , Oligonucleotide Array Sequence Analysis , Phenotype , Phylogeny , Plant Proteins/classification , Plant Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Amino Acid
15.
J Exp Bot ; 63(14): 5223-32, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22791834

ABSTRACT

The awn, an apical extension from the lemma of the spikelet, plays important roles in seed dispersal, burial, and photosynthesis. Barley typically has long awns, but short-awn variants exist. The short awn 2 (lks2) gene, which produces awns about 50% shorter than normal, is a natural variant that is restricted to Eastern Asia. Positional cloning revealed that Lks2 encodes a SHI-family transcription factor. Allelism tests showed that lks2 is allelic to unbranched style 4 (ubs4) and breviaristatum-d (ari-d), for which the phenotypes are very short awn and sparse stigma hairs. The gene identity was validated by 25 mutant alleles with lesions in the Lks2 gene. Of these, 17 affected either or both conserved regions: the zinc-binding RING-finger motif and the IGGH domain. Lks2 is highly expressed in awns and pistils. Histological observations of longitudinal awn sections showed that the lks2 short-awn phenotype resulted from reduced cell number. Natural variants of lks2 were classified into three types, but all shared a single-nucleotide polymorphism (SNP) that causes a proline-to-leucine change at position 245 in the IGGH domain. All three lks2 natural variants were regarded as weak alleles because their awn and pistil phenotypes are mild compared with those of the 25 mutant alleles. Natural variants of lks2 found in the east of China and the Himalayas had considerably different sequences in the regions flanking the critical SNP, suggesting independent origins. The available results suggest that the lks2 allele might have a selective advantage in the adaptation of barley to high-precipitation areas of Eastern Asia.


Subject(s)
Flowers/genetics , Gene Expression Regulation, Plant , Hordeum/genetics , Plant Proteins/genetics , Transcription Factors/genetics , Amino Acid Sequence , Chromosome Mapping , Chromosome Walking , Cloning, Molecular , Flowers/anatomy & histology , Flowers/chemistry , Flowers/growth & development , Gene Expression Regulation, Developmental , Hordeum/anatomy & histology , Hordeum/chemistry , Hordeum/growth & development , Molecular Sequence Data , Phylogeny , Plant Proteins/chemistry , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Transcription Factors/chemistry
16.
Plant Cell Physiol ; 53(7): 1232-46, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22537757

ABSTRACT

The barley (Hordeum vulgare L.) mutants fch2 and clo-f2 comprise an allelic group of 14 Chl b-deficient lines. The genetic map position of fch2 corresponds to the physical map position of the gene encoding chlorophyllide a oxygenase. This enzyme converts chlorophyllide a to chlorophyllide b and it is essential for Chl b biosynthesis. The fch2 and clo-f2 barley lines were shown to be mutated in the gene for chlorophyllide a oxygenase. A five-base insertion was found in fch2 and base deletions in clo-f2.101, clo-f2.105, clo-f2.2800 and clo-f2.3613. In clo-f2.105 and clo-f2.108, nonsense base exchanges were discovered. All of these mutations led to a premature stop of translation and none of the mutants formed Chl b. The mutant clo-f2.2807 was transcript deficient and formed no Chl b. Missense mutations in clo-f2.102 (leading to the amino acid exchange D495N) and clo-f2.103 (G280D) resulted in a total lack of Chl b, whereas in the missense mutants clo-f2.107 (P419L), clo-f2.109 (A94T), clo-f2.122 (C320Y), clo-f2.123 (A94T), clo-f2.133 (A376V) and clo-f2.181 (L373F) intermediate contents of Chl b were determined. The missense mutations affect conserved residues, and their effect on chlorophyllide a oxygenase is discussed. The mutations in clo-f2.102, clo-f2.103, clo-f2.133 and clo-f2.181 may influence electron transfer as illustrated in the active site of a structural model protein. The changes in clo-f2.107, clo-f2.109, clo-f2.122 and clo-f2.123 may lead to Chlb deficiency by interfering with the regulation of chlorophyllide a oxygenase. The correlation of mutations and phenotypes strongly supports that the barley locus fch2 encodes chlorophyllide a oxygenase.


Subject(s)
Hordeum/genetics , Mutation, Missense , Oxygenases/genetics , Plant Proteins/metabolism , Alleles , Amino Acid Sequence , Catalytic Domain , Chlorophyll/genetics , Chlorophyll/metabolism , Chromosome Mapping , Chromosomes, Plant/genetics , Chromosomes, Plant/metabolism , Cloning, Molecular , Codon, Nonsense/genetics , Codon, Nonsense/metabolism , Electron Transport , Frameshift Mutation , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Genes, Plant , Hordeum/enzymology , Molecular Sequence Data , Oxygenases/metabolism , Phenotype , Plant Proteins/genetics , Protein Structure, Tertiary , Sequence Alignment , Synteny
17.
Theor Appl Genet ; 125(1): 33-45, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22395962

ABSTRACT

A typical barley (Hordeum vulgare) floret consists of reproductive organs three stamens and a pistil, and non-reproductive organs-lodicules and two floral bracts, abaxial called 'lemma' and adaxial 'palea'. The floret is subtended by two additional bracts called outer or empty glumes. Together these organs form the basic structural unit of the grass inflorescence, a spikelet. There are commonly three spikelets at each rachis (floral stem of the barley spike) node, one central and two lateral spikelets. Rare naturally occurring or induced phenotypic variants that contain a third bract subtending the central spikelets have been described in barley. The gene responsible for this phenotype was called the THIRD OUTER GLUME1 (Trd1). The Trd1 mutants fail to suppress bract growth and as a result produce leaf-like structures that subtend each rachis node in the basal portion of the spike. Also, floral development at the collar is not always suppressed. In rice and maize, recessive mutations in NECK LEAF1 (Nl1) and TASSEL SHEATH1 (Tsh1) genes, respectively, have been shown to be responsible for orthologous phenotypes. Fine mapping of the trd1 phenotype in an F(3) recombinant population enabled us to position Trd1 on the long arm of chromosome 1H to a 10 cM region. We anchored this to a conserved syntenic region on rice chromosome Os05 and selected a set of candidate genes for validation by resequencing PCR amplicons from a series of independent mutant alleles. This analysis revealed that a GATA transcription factor, recently proposed to be Trd1, contained mutations in 10 out of 14 independent trd1 mutant alleles that would generate non-functional TRD1 proteins. Together with genetic linkage data, we confirm the identity of Trd1 as the GATA transcription factor ortholog of rice Nl1 and maize Tsh1 genes.


Subject(s)
Flowers/genetics , Genes, Plant/genetics , Genes, Suppressor , Hordeum/anatomy & histology , Hordeum/genetics , Suppression, Genetic , 3' Untranslated Regions/genetics , 5' Untranslated Regions/genetics , Alleles , Base Sequence , Chromosomes, Plant/genetics , Crosses, Genetic , Flowers/ultrastructure , Genetic Association Studies , Hordeum/ultrastructure , Molecular Sequence Data , Mutation/genetics , Oryza/genetics , Phenotype , Physical Chromosome Mapping , Polymorphism, Genetic
18.
Proc Natl Acad Sci U S A ; 109(11): 4326-31, 2012 Mar 13.
Article in English | MEDLINE | ID: mdl-22371569

ABSTRACT

Time to flowering has an important impact on yield and has been a key trait in the domestication of crop plants and the spread of agriculture. In 1961, the cultivar Mari (mat-a.8) was the very first induced early barley (Hordeum vulgare L.) mutant to be released into commercial production. Mari extended the range of two-row spring barley cultivation as a result of its photoperiod insensitivity. Since its release, Mari or its derivatives have been used extensively across the world to facilitate short-season adaptation and further geographic range extension. By exploiting an extended historical collection of early-flowering mutants of barley, we identified Praematurum-a (Mat-a), the gene responsible for this key adaptive phenotype, as a homolog of the Arabidopsis thaliana circadian clock regulator Early Flowering 3 (Elf3). We characterized 87 induced mat-a mutant lines and identified >20 different mat-a alleles that had clear mutations leading to a defective putative ELF3 protein. Expression analysis of HvElf3 and Gigantea in mutant and wild-type plants demonstrated that mat-a mutations disturb the flowering pathway, leading to the early phenotype. Alleles of Mat-a therefore have important and demonstrated breeding value in barley but probably also in many other day-length-sensitive crop plants, where they may tune adaptation to different geographic regions and climatic conditions, a critical issue in times of global warming.


Subject(s)
Adaptation, Physiological/genetics , Circadian Clocks/genetics , Genes, Plant/genetics , Hordeum/growth & development , Hordeum/genetics , Mutation/genetics , Seasons , Agriculture , DNA, Plant/genetics , Flowers/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Genetic Association Studies , Genetic Linkage , Hordeum/physiology , Molecular Sequence Data , Phenotype , Physical Chromosome Mapping , Plant Proteins/genetics , Plant Proteins/metabolism , Sequence Analysis, DNA , Synteny/genetics
19.
Nat Genet ; 43(2): 169-72, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21217754

ABSTRACT

The domestication of cereals has involved common changes in morphological features, such as seed size, seed retention and modification of vegetative and inflorescence architecture that ultimately contributed to an increase in harvested yield. In barley, this process has resulted in two different cultivated types, two-rowed and six-rowed forms, both derived from the wild two-rowed ancestor, with archaeo-botanical evidence indicating the origin of six-rowed barley early in the domestication of the species, some 8,600-8,000 years ago. Variation at SIX-ROWED SPIKE 1 (VRS1) is sufficient to control this phenotype. However, phenotypes imposed by VRS1 alleles are modified by alleles at the INTERMEDIUM-C (INT-C) locus. Here we show that INT-C is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1 (TB1) and identify 17 coding mutations in barley TB1 correlated with lateral spikelet fertility phenotypes.


Subject(s)
Genes, Plant , Hordeum/genetics , Plant Proteins/genetics , Zea mays/genetics , Alleles , Chromosome Mapping , Genome, Plant , Genome-Wide Association Study , Genotype , Microscopy, Fluorescence/methods , Models, Genetic , Mutation , Phenotype , Polymorphism, Single Nucleotide , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA
20.
Plant Physiol ; 155(2): 617-27, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21088227

ABSTRACT

Since the early 20th century, barley (Hordeum vulgare) has been a model for investigating the effects of physical and chemical mutagens and for exploring the potential of mutation breeding in crop improvement. As a consequence, extensive and well-characterized collections of morphological and developmental mutants have been assembled that represent a valuable resource for exploring a wide range of complex and fundamental biological processes. We constructed a collection of 881 backcrossed lines containing mutant alleles that induce a majority of the morphological and developmental variation described in this species. After genotyping these lines with up to 3,072 single nucleotide polymorphisms, comparison to their recurrent parent defined the genetic location of 426 mutant alleles to chromosomal segments, each representing on average <3% of the barley genetic map. We show how the gene content in these segments can be predicted through conservation of synteny with model cereal genomes, providing a route to rapid gene identification.


Subject(s)
Genomics/methods , Genotype , Hordeum/genetics , Alleles , Chromosome Mapping , Crosses, Genetic , DNA, Plant/genetics , Genes, Plant , Hordeum/growth & development , Mutation , Oryza/genetics , Polymorphism, Single Nucleotide , Synteny
SELECTION OF CITATIONS
SEARCH DETAIL
...