Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
Neurol Clin Pract ; 14(1): e200245, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38585236

ABSTRACT

Background and Objectives: To understand why patients with drug-resistant epilepsy (DRE) pursue invasive electrical brain stimulation (EBS). Methods: We interviewed patients with DRE (n = 20) and their caregivers about their experiences in pursuing EBS approximately 1 year post device implant. Inductive analysis was applied to identify key motivating factors. Results: The cohort included participants aged from teens to 50s with deep brain stimulation, vagus nerve stimulation, responsive neurostimulation, and chronic subthreshold cortical stimulation. Patients' motivations included (1) improved quality of life (2) intolerability of antiseizure medications, (3) desperation, and (4) patient-family dynamics. Both patients and caregivers described a desire to alleviate burdens of the other. Patient apprehensions about EBS focused on invasiveness and the presence of electrodes in the brain. Previous experiences with invasive monitoring and the ability to see hardware in person during clinical visits influenced patients' comfort in proceeding with EBS. Despite realistic expectations for modest and delayed benefits, patients held out hope for an exceptionally positive outcome. Discussion: Our findings describe the motivations and decision-making process for patients with DRE who pursue invasive EBS. Patients balance feelings of desperation, personal goals, frustration with medication side effects, fears about surgery, and potential pressure from concerned caregivers. These factors together with the sense that patients have exhausted therapeutic alternatives may explain the limited decisional ambivalence observed in this cohort. These themes highlight opportunities for epilepsy care teams to support patient decision-making processes.

2.
Proc Natl Acad Sci U S A ; 121(15): e2317769121, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38564633

ABSTRACT

Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by social and communication deficits and repetitive behaviors. The genetic heterogeneity of ASD presents a challenge to the development of an effective treatment targeting the underlying molecular defects. ASD gating charge mutations in the KCNQ/KV7 potassium channel cause gating pore currents (Igp) and impair action potential (AP) firing of dopaminergic neurons in brain slices. Here, we investigated ASD gating charge mutations of the voltage-gated SCN2A/NaV1.2 brain sodium channel, which ranked high among the ion channel genes with mutations in individuals with ASD. Our results show that ASD mutations in the gating charges R2 in Domain-II (R853Q), and R1 (R1626Q) and R2 (R1629H) in Domain-IV of NaV1.2 caused Igp in the resting state of ~0.1% of the amplitude of central pore current. The R1626Q mutant also caused significant changes in the voltage dependence of fast inactivation, and the R1629H mutant conducted proton-selective Igp. These potentially pathogenic Igp were exacerbated by the absence of the extracellular Mg2+ and Ca2+. In silico simulation of the effects of these mutations in a conductance-based single-compartment cortical neuron model suggests that the inward Igp reduces the time to peak for the first AP in a train, increases AP rates during a train of stimuli, and reduces the interstimulus interval between consecutive APs, consistent with increased neural excitability and altered input/output relationships. Understanding this common pathophysiological mechanism among different voltage-gated ion channels at the circuit level will give insights into the underlying mechanisms of ASD.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Voltage-Gated Sodium Channels , Humans , Autism Spectrum Disorder/genetics , Autistic Disorder/genetics , Brain , Mutation
3.
medRxiv ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38496621

ABSTRACT

Deep brain stimulation (DBS) is a viable treatment for a variety of neurological conditions, however, the mechanisms through which DBS modulates large-scale brain networks are unresolved. Clinical effects of DBS are observed over multiple timescales. In some conditions, such as Parkinson's disease and essential tremor, clinical improvement is observed within seconds. In many other conditions, such as epilepsy, central pain, dystonia, neuropsychiatric conditions or Tourette syndrome, the DBS related effects are believed to require neuroplasticity or reorganization and often take hours to months to observe. To optimize DBS parameters, it is therefore essential to develop electrophysiological biomarkers that characterize whether DBS settings are successfully engaging and modulating the network involved in the disease of interest. In this study, 10 individuals with drug resistant epilepsy undergoing intracranial stereotactic EEG including a thalamus electrode underwent a trial of repetitive thalamic stimulation. We evaluated thalamocortical effective connectivity using single pulse electrical stimulation, both at baseline and following a 145 Hz stimulation treatment trial. We found that when high frequency stimulation was delivered for >1.5 hours, the evoked potentials measured from remote regions were significantly reduced in amplitude and the degree of modulation was proportional to the strength of baseline connectivity. When stimulation was delivered for shorter time periods, results were more variable. These findings suggest that changes in effective connectivity in the network targeted with DBS accumulate over hours of DBS. Stimulation evoked potentials provide an electrophysiological biomarker that allows for efficient data-driven characterization of neuromodulation effects, which could enable new objective approaches for individualized DBS optimization.

4.
J Neural Eng ; 21(2)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38484397

ABSTRACT

Objective.This study aims to characterize the time course of impedance, a crucial electrophysiological property of brain tissue, in the human thalamus (THL), amygdala-hippocampus, and posterior hippocampus over an extended period.Approach.Impedance was periodically sampled every 5-15 min over several months in five subjects with drug-resistant epilepsy using an investigational neuromodulation device. Initially, we employed descriptive piecewise and continuous mathematical models to characterize the impedance response for approximately three weeks post-electrode implantation. We then explored the temporal dynamics of impedance during periods when electrical stimulation was temporarily halted, observing a monotonic increase (rebound) in impedance before it stabilized at a higher value. Lastly, we assessed the stability of amplitude and phase over the 24 h impedance cycle throughout the multi-month recording.Main results.Immediately post-implantation, the impedance decreased, reaching a minimum value in all brain regions within approximately two days, and then increased monotonically over about 14 d to a stable value. The models accounted for the variance in short-term impedance changes. Notably, the minimum impedance of the THL in the most epileptogenic hemisphere was significantly lower than in other regions. During the gaps in electrical stimulation, the impedance rebound decreased over time and stabilized around 200 days post-implant, likely indicative of the foreign body response and fibrous tissue encapsulation around the electrodes. The amplitude and phase of the 24 h impedance oscillation remained stable throughout the multi-month recording, with circadian variation in impedance dominating the long-term measures.Significance.Our findings illustrate the complex temporal dynamics of impedance in implanted electrodes and the impact of electrical stimulation. We discuss these dynamics in the context of the known biological foreign body response of the brain to implanted electrodes. The data suggest that the temporal dynamics of impedance are dependent on the anatomical location and tissue epileptogenicity. These insights may offer additional guidance for the delivery of therapeutic stimulation at various time points post-implantation for neuromodulation therapy.


Subject(s)
Deep Brain Stimulation , Foreign Bodies , Humans , Electric Impedance , Brain/physiology , Electrodes, Implanted , Deep Brain Stimulation/methods
5.
medRxiv ; 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38343858

ABSTRACT

Objective: This study aims to characterize the time course of impedance, a crucial electrophysiological property of brain tissue, in the human thalamus (THL), amygdala-hippocampus (AMG-HPC), and posterior hippocampus (post-HPC) over an extended period. Approach: Impedance was periodically sampled every 5-15 minutes over several months in five subjects with drug-resistant epilepsy using an experimental neuromodulation device. Initially, we employed descriptive piecewise and continuous mathematical models to characterize the impedance response for approximately three weeks post-electrode implantation. We then explored the temporal dynamics of impedance during periods when electrical stimulation was temporarily halted, observing a monotonic increase (rebound) in impedance before it stabilized at a higher value. Lastly, we assessed the stability of amplitude and phase over the 24-hour impedance cycle throughout the multi-month recording. Main results: Immediately post-implantation, the impedance decreased, reaching a minimum value in all brain regions within approximately two days, and then increased monotonically over about 14 days to a stable value. The models accounted for the variance in short-term impedance changes. Notably, the minimum impedance of the THL in the most epileptogenic hemisphere was significantly lower than in other regions. During the gaps in electrical stimulation, the impedance rebound decreased over time and stabilized around 200 days post-implant, likely indicative of the foreign body response and fibrous tissue encapsulation around the electrodes. The amplitude and phase of the 24-hour impedance oscillation remained stable throughout the multi-month recording, with circadian variation in impedance dominating the long-term measures. Significance: Our findings illustrate the complex temporal dynamics of impedance in implanted electrodes and the impact of electrical stimulation. We discuss these dynamics in the context of the known biological foreign body response of the brain to implanted electrodes. The data suggest that the temporal dynamics of impedance are dependent on the anatomical location and tissue epileptogenicity. These insights may offer additional guidance for the delivery of therapeutic stimulation at various time points post-implantation for neuromodulation therapy.

6.
medRxiv ; 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38405801

ABSTRACT

High frequency anterior nucleus of the thalamus deep brain stimulation (ANT DBS) is an established therapy for treatment resistant focal epilepsies. Although high frequency-ANT DBS is well tolerated, patients are rarely seizure free and the efficacy of other DBS parameters and their impact on comorbidities of epilepsy such as depression and memory dysfunction remain unclear. The purpose of this study was to assess the impact of low vs high frequency ANT DBS on verbal memory and self-reported anxiety and depression symptoms. Five patients with treatment resistant temporal lobe epilepsy were implanted with an investigational brain stimulation and sensing device capable of ANT DBS and ambulatory intracranial electroencephalographic (iEEG) monitoring, enabling long-term detection of electrographic seizures. While patients received therapeutic high frequency (100 and 145 Hz continuous and cycling) and low frequency (2 and 7 Hz continuous) stimulation, they completed weekly free recall verbal memory tasks and thrice weekly self-reports of anxiety and depression symptom severity. Mixed effects models were then used to evaluate associations between memory scores, anxiety and depression self-reports, seizure counts, and stimulation frequency. Memory score was significantly associated with stimulation frequency, with higher free recall verbal memory scores during low frequency ANT DBS. Self-reported anxiety and depression symptom severity was not significantly associated with stimulation frequency. These findings suggest the choice of ANT DBS stimulation parameter may impact patients' cognitive function, independently of its impact on seizure rates.

7.
Int Psychogeriatr ; : 1-49, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38329083

ABSTRACT

OBJECTIVE: We aim to analyze the efficacy and safety of TMS on cognition in mild cognitive impairment (MCI), Alzheimer's disease (AD), AD-related dementias, and nondementia conditions with comorbid cognitive impairment. DESIGN: Systematic review, Meta-Analysis. SETTING: We searched MEDLINE, Embase, Cochrane database, APA PsycINFO, Web of Science, and Scopus from January 1, 2000, to February 9, 2023. PARTICIPANTS AND INTERVENTIONS: RCTs, open-label, and case series studies reporting cognitive outcomes following TMS intervention were included. MEASUREMENT: Cognitive and safety outcomes were measured. Cochrane Risk of Bias for RCTs and MINORS (Methodological Index for Non-Randomized Studies) criteria were used to evaluate study quality. This study was registered with PROSPERO (CRD42022326423). RESULTS: The systematic review included 143 studies (n = 5,800 participants) worldwide, encompassing 94 RCTs, 43 open-label prospective, 3 open-label retrospective, and 3 case series. The meta-analysis included 25 RCTs in MCI and AD. Collectively, these studies provide evidence of improved global and specific cognitive measures with TMS across diagnostic groups. Only 2 studies (among 143) reported 4 adverse events of seizures: 3 were deemed TMS unrelated and another resolved with coil repositioning. Meta-analysis showed large effect sizes on global cognition (Mini-Mental State Examination (SMD = 0.80 [0.26, 1.33], p = 0.003), Montreal Cognitive Assessment (SMD = 0.85 [0.26, 1.44], p = 0.005), Alzheimer's Disease Assessment Scale-Cognitive Subscale (SMD = -0.96 [-1.32, -0.60], p < 0.001)) in MCI and AD, although with significant heterogeneity. CONCLUSION: The reviewed studies provide favorable evidence of improved cognition with TMS across all groups with cognitive impairment. TMS was safe and well tolerated with infrequent serious adverse events.

8.
medRxiv ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38370724

ABSTRACT

Temporal lobe epilepsy is a common neurological disease characterized by recurrent seizures. These seizures often originate from limbic networks and people also experience chronic comorbidities related to memory, mood, and sleep (MMS). Deep brain stimulation targeting the anterior nucleus of the thalamus (ANT-DBS) is a proven therapy, but the optimal stimulation parameters remain unclear. We developed a neurotechnology platform for tracking seizures and MMS to enable data streaming between an investigational brain sensing-stimulation implant, mobile devices, and a cloud environment. Artificial Intelligence algorithms provided accurate catalogs of seizures, interictal epileptiform spikes, and wake-sleep brain states. Remotely administered memory and mood assessments were used to densely sample cognitive and behavioral response during ANT-DBS. We evaluated the efficacy of low-frequency versus high-frequency ANT-DBS. They both reduced seizures, but low-frequency ANT-DBS showed greater reductions and better sleep and memory. These results highlight the potential of synchronized brain sensing and behavioral tracking for optimizing neuromodulation therapy.

9.
bioRxiv ; 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38260687

ABSTRACT

Human brain connectivity can be measured in different ways. Intracranial EEG (iEEG) measurements during single pulse electrical stimulation provide a unique way to assess the spread of electrical information with millisecond precision. To provide a robust workflow to process these cortico-cortical evoked potential (CCEP) data and detect early evoked responses in a fully automated and reproducible fashion, we developed Early Response (ER)-detect. ER-detect is an open-source Python package and Docker application to preprocess BIDS structured iEEG data and detect early evoked CCEP responses. ER-detect can use three response detection methods, which were validated against 14-manually annotated CCEP datasets from two different sites by four independent raters. Results showed that ER-detect's automated detection performed on par with the inter-rater reliability (Cohen's Kappa of ~0.6). Moreover, ER-detect was optimized for processing large CCEP datasets, to be used in conjunction with other connectomic investigations. ER-detect provides a highly efficient standardized workflow such that iEEG-BIDS data can be processed in a consistent manner and enhance the reproducibility of CCEP based connectivity results.

10.
Neurosurgery ; 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38189460

ABSTRACT

BACKGROUND AND OBJECTIVES: Epilepsy is considered one of the most prevalent and severe chronic neurological disorders worldwide. Our study aims to analyze the national trends in different treatment modalities for individuals with drug-resistant epilepsy and investigate the outcomes associated with these procedural trends in the United States. METHODS: Using the National Inpatient Sample database from 2010 to 2020, patients with drug-resistant focal epilepsy who underwent laser interstitial thermal therapy (LITT), open surgical resection, vagus nerve stimulation (VNS), or responsive neurostimulation (RNS) were identified. Trend analysis was performed using piecewise joinpoint regression. Propensity score matching was used to compare outcomes between 10 years prepandemic before 2020 and the first peak of the COVID-19 pandemic. RESULTS: This study analyzed a total of 33 969 patients with a diagnosis of drug-resistant epilepsy, with 3343 patients receiving surgical resection (78%), VNS (8.21%), RNS (8%), and LITT (6%). Between 2010 and 2020, there was an increase in the use of invasive electroencephalography monitoring for seizure zone localization (P = .003). There was an increase in the use of LITT and RNS (P < .001), while the use of surgical resection and VNS decreased over time (P < .001). Most of these patients (89%) were treated during the pre-COVID pandemic era (2010-2019), while a minority (11%) underwent treatment during the COVID pandemic (2020). After propensity score matching, the rate of pulmonary complications, postprocedural hematoma formation, and mortality were slightly higher during the pandemic compared with the prepandemic period (P = .045, P = .033, and P = .026, respectively). CONCLUSION: This study indicates a relative decrease in the use of surgical resections, as a treatment for drug-resistant focal epilepsy. By contrast, newer, minimally invasive surgical approaches including LITT and RNS showed gradual increases in usage.

11.
J Neurosci ; 43(39): 6653-6666, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37620157

ABSTRACT

The impedance is a fundamental electrical property of brain tissue, playing a crucial role in shaping the characteristics of local field potentials, the extent of ephaptic coupling, and the volume of tissue activated by externally applied electrical brain stimulation. We tracked brain impedance, sleep-wake behavioral state, and epileptiform activity in five people with epilepsy living in their natural environment using an investigational device. The study identified impedance oscillations that span hours to weeks in the amygdala, hippocampus, and anterior nucleus thalamus. The impedance in these limbic brain regions exhibit multiscale cycles with ultradian (∼1.5-1.7 h), circadian (∼21.6-26.4 h), and infradian (∼20-33 d) periods. The ultradian and circadian period cycles are driven by sleep-wake state transitions between wakefulness, nonrapid eye movement (NREM) sleep, and rapid eye movement (REM) sleep. Limbic brain tissue impedance reaches a minimum value in NREM sleep, intermediate values in REM sleep, and rises through the day during wakefulness, reaching a maximum in the early evening before sleep onset. Infradian (∼20-33 d) impedance cycles were not associated with a distinct behavioral correlate. Brain tissue impedance is known to strongly depend on the extracellular space (ECS) volume, and the findings reported here are consistent with sleep-wake-dependent ECS volume changes recently observed in the rodent cortex related to the brain glymphatic system. We hypothesize that human limbic brain ECS changes during sleep-wake state transitions underlie the observed multiscale impedance cycles. Impedance is a simple electrophysiological biomarker that could prove useful for tracking ECS dynamics in human health, disease, and therapy.SIGNIFICANCE STATEMENT The electrical impedance in limbic brain structures (amygdala, hippocampus, anterior nucleus thalamus) is shown to exhibit oscillations over multiple timescales. We observe that impedance oscillations with ultradian and circadian periodicities are associated with transitions between wakefulness, NREM, and REM sleep states. There are also impedance oscillations spanning multiple weeks that do not have a clear behavioral correlate and whose origin remains unclear. These multiscale impedance oscillations will have an impact on extracellular ionic currents that give rise to local field potentials, ephaptic coupling, and the tissue activated by electrical brain stimulation. The approach for measuring tissue impedance using perturbational electrical currents is an established engineering technique that may be useful for tracking ECS volume.


Subject(s)
Sleep, REM , Sleep , Humans , Electric Impedance , Sleep/physiology , Sleep, REM/physiology , Brain/physiology , Wakefulness/physiology , Hippocampus
12.
J Neurosci ; 43(39): 6697-6711, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37620159

ABSTRACT

Stimulation-evoked signals are starting to be used as biomarkers to indicate the state and health of brain networks. The human limbic network, often targeted for brain stimulation therapy, is involved in emotion and memory processing. Previous anatomic, neurophysiological, and functional studies suggest distinct subsystems within the limbic network (Rolls, 2015). Studies using intracranial electrical stimulation, however, have emphasized the similarities of the evoked waveforms across the limbic network. We test whether these subsystems have distinct stimulation-driven signatures. In eight patients (four male, four female) with drug-resistant epilepsy, we stimulated the limbic system with single-pulse electrical stimulation. Reliable corticocortical evoked potentials (CCEPs) were measured between hippocampus and the posterior cingulate cortex (PCC) and between the amygdala and the anterior cingulate cortex (ACC). However, the CCEP waveform in the PCC after hippocampal stimulation showed a unique and reliable morphology, which we term the "limbic Hippocampus-Anterior nucleus of the thalamus-Posterior cingulate, HAP-wave." This limbic HAP-wave was visually distinct and separately decoded from the CCEP waveform in ACC after amygdala stimulation. Diffusion MRI data show that the measured end points in the PCC overlap with the end points of the parolfactory cingulum bundle rather than the parahippocampal cingulum, suggesting that the limbic HAP-wave may travel through fornix, mammillary bodies, and the anterior nucleus of the thalamus (ANT). This was further confirmed by stimulating the ANT, which evoked the same limbic HAP-wave but with an earlier latency. Limbic subsystems have unique stimulation-evoked signatures that may be used in the future to help network pathology diagnosis.SIGNIFICANCE STATEMENT The limbic system is often compromised in diverse clinical conditions, such as epilepsy or Alzheimer's disease, and characterizing its typical circuit responses may provide diagnostic insight. Stimulation-evoked waveforms have been used in the motor system to diagnose circuit pathology. We translate this framework to limbic subsystems using human intracranial stereo EEG (sEEG) recordings that measure deeper brain areas. Our sEEG recordings describe a stimulation-evoked waveform characteristic to the memory and spatial subsystem of the limbic network that we term the "limbic HAP-wave." The limbic HAP-wave follows anatomic white matter pathways from hippocampus to thalamus to the posterior cingulum and shows promise as a distinct biomarker of signaling in the human brain memory and spatial limbic network.


Subject(s)
Anterior Thalamic Nuclei , Epilepsy , Humans , Male , Female , Limbic System/physiology , Electroencephalography , Evoked Potentials/physiology , Electric Stimulation
13.
Neurosurgery ; 93(6): 1393-1406, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37477444

ABSTRACT

BACKGROUND AND OBJECTIVES: The anterior nucleus of the thalamus (ANT) is a common target for deep brain stimulation (DBS) for drug-resistant epilepsy (DRE). However, the surgical approach to the ANT remains challenging because of its unique anatomy. This study aims to summarize our experience with the posterior temporo-parietal extraventricular (TPEV) approach targeting the ANT for DBS in DRE. METHODS: We performed a retrospective analysis of patients with DRE who underwent ANT-DBS using the TPEV approach between January 2011 and February 2021. Subjects with at least 6-month follow-up were eligible. The final lead position and number of active contacts targeting the anteroventral nucleus (AV) of the ANT were assessed using Lead-DBS. Mean seizure frequency reduction percentage and responder rate (≥50% decrease in seizure frequency) were determined. RESULTS: Thirty-one patients (mean age: 32.9 years; 52% female patients) were included. The mean follow-up period was 27.6 months ± 13.9 (29, 16-36). The mean seizure frequency reduction percentage was 65% ± 26 (75, 50-82). Twenty-six of 31 participants (83%) were responders, P < .001. Two subjects (6%) were seizure-free for at least 6 months at the last evaluation. Antiepileptic drugs dose and/or number decreased in 17/31 subjects (55%). The success rate for placing at least 1 contact at AV was 87% (27/31 patients) bilaterally. The number of active contacts at the AV was significantly greater in the responder group, 3.1 ± 1.3 (3, 2-4) vs 1.8 ± 1.1 (2, 1-2.5); P = .041 with a positive correlation between the number of active contacts and seizure reduction percentage; r = 0.445, R 2 = 0.198, P = .012. CONCLUSION: The TPEV trajectory is a safe and effective approach to target the ANT for DBS. Future studies are needed to compare the clinical outcomes and target accuracy with the standard approaches.


Subject(s)
Anterior Thalamic Nuclei , Deep Brain Stimulation , Drug Resistant Epilepsy , Humans , Female , Adult , Male , Retrospective Studies , Anterior Thalamic Nuclei/surgery , Drug Resistant Epilepsy/surgery , Seizures
14.
PLoS Comput Biol ; 19(6): e1011220, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37307253

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pcbi.1010527.].

15.
Epilepsy Behav Rep ; 22: 100601, 2023.
Article in English | MEDLINE | ID: mdl-37122846

ABSTRACT

Several studies have suggested the epileptogenic potential of temporal encephaloceles. However, there is limited literature describing the results of intracranial EEG monitoring for patients with temporal encephaloceles. We describe a 19 year-old right-handed woman with drug-resistant epilepsy who presented with seizure onset at age 16 in the setting of a left temporal encephalocele where the seizure onset zone was confirmed to be the encephalocele via stereo EEG (sEEG). She had focal impaired awareness seizures occurring weekly that would progress to focal to bilateral tonic-clonic seizures monthly. Imaging showed a left anterior inferior temporal lobe encephalocele and a left choroidal fissure cyst that were stable on repeat imaging. Prolonged scalp recorded video EEG recorded seizures that showed either near simultaneous onset in the bitemporal head regions or a transitional left temporal sharp wave followed by maximum evolution in the left temporal region. Invasive monitoring with sEEG electrodes targeting primarily the left limbic system with one electrode directly in the encephalocele captured seizures with onset in the left temporal pole encephalocele. A limited resection was performed based on the results of the sEEG and except for one seizure in the immediate postop period in the setting of infection, patient remains seizure free at her 4 month follow up. This report describes a case of drug-resistant focal epilepsy where sEEG monitoring confirmed a temporal encephalocele to be the seizure onset zone without simultaneous onset at mesial temporal or other neocortical structures that were sampled. Our findings support the potential for epileptogenicity within an encephalocele with direct intracranial monitoring.

16.
J Neurosci ; 43(24): 4434-4447, 2023 06 14.
Article in English | MEDLINE | ID: mdl-37188514

ABSTRACT

The human ventral temporal cortex (VTC) is highly connected to integrate visual perceptual inputs with feedback from cognitive and emotional networks. In this study, we used electrical brain stimulation to understand how different inputs from multiple brain regions drive unique electrophysiological responses in the VTC. We recorded intracranial EEG data in 5 patients (3 female) implanted with intracranial electrodes for epilepsy surgery evaluation. Pairs of electrodes were stimulated with single-pulse electrical stimulation, and corticocortical evoked potential responses were measured at electrodes in the collateral sulcus and lateral occipitotemporal sulcus of the VTC. Using a novel unsupervised machine learning method, we uncovered 2-4 distinct response shapes, termed basis profile curves (BPCs), at each measurement electrode in the 11-500 ms after stimulation interval. Corticocortical evoked potentials of unique shape and high amplitude were elicited following stimulation of several regions and classified into a set of four consensus BPCs across subjects. One of the consensus BPCs was primarily elicited by stimulation of the hippocampus; another by stimulation of the amygdala; a third by stimulation of lateral cortical sites, such as the middle temporal gyrus; and the final one by stimulation of multiple distributed sites. Stimulation also produced sustained high-frequency power decreases and low-frequency power increases that spanned multiple BPC categories. Characterizing distinct shapes in stimulation responses provides a novel description of connectivity to the VTC and reveals significant differences in input from cortical and limbic structures.SIGNIFICANCE STATEMENT Disentangling the numerous input influences on highly connected areas in the brain is a critical step toward understanding how brain networks work together to coordinate human behavior. Single-pulse electrical stimulation is an effective tool to accomplish this goal because the shapes and amplitudes of signals recorded from electrodes are informative of the synaptic physiology of the stimulation-driven inputs. We focused on targets in the ventral temporal cortex, an area strongly implicated in visual object perception. By using a data-driven clustering algorithm, we identified anatomic regions with distinct input connectivity profiles to the ventral temporal cortex. Examining high-frequency power changes revealed possible modulation of excitability at the recording site induced by electrical stimulation of connected regions.


Subject(s)
Cerebral Cortex , Temporal Lobe , Humans , Female , Temporal Lobe/physiology , Evoked Potentials/physiology , Hippocampus , Brain Mapping/methods , Electric Stimulation/methods
17.
Epilepsia ; 64 Suppl 3: S49-S61, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37194746

ABSTRACT

Direct cortical stimulation has been applied in epilepsy for nearly a century and has experienced a renaissance, given unprecedented opportunities to probe, excite, and inhibit the human brain. Evidence suggests stimulation can increase diagnostic and therapeutic utility in patients with drug-resistant epilepsies. However, choosing appropriate stimulation parameters is not a trivial issue, and is further complicated by epilepsy being characterized by complex brain state dynamics. In this article derived from discussions at the ICTALS 2022 Conference (International Conference on Technology and Analysis for Seizures), we succinctly review the literature on cortical stimulation applied acutely and chronically to the epileptic brain for localization, monitoring, and therapeutic purposes. In particular, we discuss how stimulation is used to probe brain excitability, discuss evidence on the usefulness of stimulation to trigger and stop seizures, review therapeutic applications of stimulation, and finally discuss how stimulation parameters are impacted by brain dynamics. Although research has advanced considerably over the past decade, there are still significant hurdles to optimizing use of this technique. For example, it remains unclear to what extent short timescale diagnostic biomarkers can predict long-term outcomes and to what extent these biomarkers add information to already existing biomarkers from passive electroencephalographic recordings. Further questions include the extent to which closed loop stimulation offers advantages over open loop stimulation, what the optimal closed loop timescales may be, and whether biomarker-informed stimulation can lead to seizure freedom. The ultimate goal of bioelectronic medicine remains not just to stop seizures but rather to cure epilepsy and its comorbidities.


Subject(s)
Deep Brain Stimulation , Drug Resistant Epilepsy , Epilepsy , Humans , Epilepsy/diagnosis , Epilepsy/therapy , Brain , Seizures/therapy , Drug Resistant Epilepsy/diagnosis , Drug Resistant Epilepsy/therapy , Deep Brain Stimulation/methods , Biomarkers
19.
PLoS Comput Biol ; 19(2): e1010527, 2023 02.
Article in English | MEDLINE | ID: mdl-36809353

ABSTRACT

The relationship between macroscale electrophysiological recordings and the dynamics of underlying neural activity remains unclear. We have previously shown that low frequency EEG activity (<1 Hz) is decreased at the seizure onset zone (SOZ), while higher frequency activity (1-50 Hz) is increased. These changes result in power spectral densities (PSDs) with flattened slopes near the SOZ, which are assumed to be areas of increased excitability. We wanted to understand possible mechanisms underlying PSD changes in brain regions of increased excitability. We hypothesized that these observations are consistent with changes in adaptation within the neural circuit. We developed a theoretical framework and tested the effect of adaptation mechanisms, such as spike frequency adaptation and synaptic depression, on excitability and PSDs using filter-based neural mass models and conductance-based models. We compared the contribution of single timescale adaptation and multiple timescale adaptation. We found that adaptation with multiple timescales alters the PSDs. Multiple timescales of adaptation can approximate fractional dynamics, a form of calculus related to power laws, history dependence, and non-integer order derivatives. Coupled with input changes, these dynamics changed circuit responses in unexpected ways. Increased input without synaptic depression increases broadband power. However, increased input with synaptic depression may decrease power. The effects of adaptation were most pronounced for low frequency activity (< 1Hz). Increased input combined with a loss of adaptation yielded reduced low frequency activity and increased higher frequency activity, consistent with clinical EEG observations from SOZs. Spike frequency adaptation and synaptic depression, two forms of multiple timescale adaptation, affect low frequency EEG and the slope of PSDs. These neural mechanisms may underlie changes in EEG activity near the SOZ and relate to neural hyperexcitability. Neural adaptation may be evident in macroscale electrophysiological recordings and provide a window to understanding neural circuit excitability.


Subject(s)
Brain Mapping , Brain , Electrophysiological Phenomena , Acclimatization , Adaptation, Physiological
20.
Curr Opin Neurol ; 36(2): 69-76, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36762660

ABSTRACT

PURPOSE OF REVIEW: Neurostimulation is a quickly growing treatment approach for epilepsy patients. We summarize recent approaches to provide a perspective on the future of neurostimulation. RECENT FINDINGS: Invasive stimulation for treatment of focal epilepsy includes vagus nerve stimulation, responsive neurostimulation of the cortex and deep brain stimulation of the anterior nucleus of the thalamus. A wide range of other targets have been considered, including centromedian, central lateral and pulvinar thalamic nuclei; medial septum, nucleus accumbens, subthalamic nucleus, cerebellum, fornicodorsocommissure and piriform cortex. Stimulation for generalized onset seizures and mixed epilepsies as well as increased efforts focusing on paediatric populations have emerged. Hardware with more permanently implanted lead options and sensing capabilities is emerging. A wider variety of programming approaches than typically used may improve patient outcomes. Finally, noninvasive brain stimulation with its favourable risk profile offers the potential to treat increasingly diverse epilepsy patients. SUMMARY: Neurostimulation for the treatment of epilepsy is surprisingly varied. Flexibility and reversibility of neurostimulation allows for rapid innovation. There remains a continued need for excitability biomarkers to guide treatment and innovation. Neurostimulation, a part of bioelectronic medicine, offers distinctive benefits as well as unique challenges.


Subject(s)
Deep Brain Stimulation , Epilepsy , Child , Humans , Epilepsy/therapy , Seizures/therapy , Cerebral Cortex , Thalamus
SELECTION OF CITATIONS
SEARCH DETAIL
...