Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Oral Microbiol ; 16(1): 2372861, 2024.
Article in English | MEDLINE | ID: mdl-38979478

ABSTRACT

Background: Gingivitis in response to biofilm formation may exhibit different trajectories. The purposes of the present study were to characterize the composition of the supragingival microbiota and salivary cytokine and protein levels in healthy individuals with different gingivitis patterns, to test the hypothesis that manifestations of gingivitis associate with specific profiles in terms of supragingival microbiota, salivary cytokines, and proteins. Methods: Forty orally and systemically healthy individuals refrained from all oral hygiene procedures for a period of 14 days, followed by a resolution period of 14 days with regular oral care. Supragingival plaque level and bleeding on probing (BOP) were recorded, and supragingival plaque as well as saliva samples were collected at baseline, day 14, and day 28. Based on change in BOP% from baseline to day 14, rapid (n = 15), moderate (n = 10), and slow (n = 15) responders were identified. Supragingival microbiota composition, salivary cytokine, and protein levels were compared between groups at baseline, day 14, and day 28. Results: A significantly higher baseline abundance of Capnocytophaga, Eikenella, and Campylobacter species were recorded in rapid responders, whereas a significantly higher baseline abundance of Streptococcus species were detected in slow responders. Slow responders expressed a high degree of resilience, with minimal difference in microbial composition at baseline and after 14 days of resolution (day 28). On the contrary, significant differences in relative abundance of members of the core microbiota, Streptococcus, Actinomyces, and Rothia species, was noted in baseline samples versus day 28 samples in rapid responders. Comparable baseline cytokine and protein levels were recorded in all groups. Conclusion: Supragingival microbiota composition, but not saliva cytokine and protein profiles, seems to influence the extent of the inflammatory response during development of gingivitis in systemically healthy individuals.


Baseline composition of the supragingival microbiota might predict different gingivitis trajectories.Microbial resilience after gingivitis might augment oral homeostasis in individuals with a slow gingivitis trajectory.

2.
Pathogens ; 13(5)2024 May 16.
Article in English | MEDLINE | ID: mdl-38787271

ABSTRACT

Data from systematic reviews and meta-analyses show that probiotics positively impact clinical parameters of oral diseases such as gingivitis, dental caries, and periodontitis. However, the working mechanism of probiotics is not fully understood, but is hypothesized to be mediated by direct and indirect interactions with the oral microbiota and the human host. In the present narrative review, we focused on the microbiological effect of probiotic supplements based on data retrieved from randomized clinical trials (RCTs). In addition, we assessed to what extent contemporary molecular methods have been employed in clinical trials in the field of oral probiotics. Multiple RCTs have been performed studying the potential effect of probiotics on gingivitis, dental caries, and periodontitis, as evaluated by microbial endpoints. In general, results are conflicting, with some studies reporting a positive effect, whereas others are not able to record any effect. Major differences in terms of study designs and sample size, as well as delivery route, frequency, and duration of probiotic consumption, hamper comparison across studies. In addition, most RCTs have been performed with a limited sample size using relatively simple methods for microbial identification, such as culturing, qPCR, and DNA-DNA checkerboard, while high-throughput methods such as 16S sequencing have only been employed in a few studies. Currently, state-of-the-art molecular methods such as metagenomics, metatranscriptomics, and metaproteomics have not yet been used in RCTs in the field of probiotics. The present narrative review revealed that the effect of probiotic supplements on the oral microbiota remains largely uncovered. One important reason is that most RCTs are performed without studying the microbiological effect. To facilitate future systematic reviews and meta-analyses, an internationally agreed core outcome set for the reporting of microbial endpoints in clinical trials would be desirable. Such a standardized collection of outcomes would most likely improve the quality of probiotic research in the oral context.

3.
Nutrients ; 15(22)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38004199

ABSTRACT

The present study aims to test whether probiotics protect against experimental gingivitis incited by 14 days of oral hygiene neglect and/or subsequently support the restoration of oral homeostasis. Eighty systemically and orally healthy participants refrained from oral hygiene procedures for 14 days, followed by 14 days with regular oral hygiene procedures. Additionally, participants consumed either probiotics (n = 40) or placebo (n = 40) throughout the trial. At baseline, day 14, and day 28, supragingival plaque score and bleeding-on-probing percentage (BOP %) were registered, and supragingival plaque and saliva samples were collected. The supragingival microbiota was characterized using 16S sequencing, and saliva samples were analyzed for levels of pro-inflammatory cytokines and proteases. At day 28, the relative abundance of Lautropia (p = 0.014), Prevotella (p = 0.046), Fusobacterium (p = 0.033), and Selenomonas (p = 0.0078) genera were significantly higher in the placebo group compared to the probiotics group, while the relative abundance of Rothia (p = 0.047) species was associated with the probiotics group. Streptococcus sanguinis was associated with the probiotics group, while Campylobacter gracilis was associated with the placebo group. No difference was observed in salivary cytokines, albumin, or any enzyme activity. The present study suggests that probiotics support the resilience of the oral microbiota in the resolution period after gingivitis.


Subject(s)
Gingivitis , Microbiota , Probiotics , Humans , Gingivitis/therapy , Research Design , Probiotics/therapeutic use , Cytokines
4.
Nutrients ; 15(22)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38004205

ABSTRACT

The aim was to test if probiotics counteract oral dysbiosis during 14 days of sugar stress and subsequently help restore oral homeostasis. Eighty healthy individuals received either probiotics (n = 40) or placebo lozenges (n = 40) for 28 days and rinsed with a 10% sucrose solution 6-8 times during the initial 14 days of the trial. Saliva and supragingival samples were collected at baseline, day 14, and day 28. Saliva samples were analyzed for levels of pro-inflammatory cytokines, albumin, and salivary enzyme activity. The supragingival microbiota was characterized according to the Human Oral Microbiome Database. After 14 days of sugar stress, the relative abundance of Porphyromonas species was significantly higher (p = 0.03) and remained significantly elevated at day 28 in the probiotic group compared to the placebo group (p = 0.004). At day 28, the relative abundance of Kingella species was significantly higher in the probiotic group (p = 0.03). Streptococcus gordinii and Neisseria elongata were associated with the probiotic group on day 28, while Streptococcus sobrinus was associated with the placebo group on day 14 and day 28. On day 28, the salivary albumin level was significantly lower in the probiotic group. The present study demonstrates a potential stabilizing effect on the supragingival microbiota mediated by consumption of probiotics during short-term sugar stress.


Subject(s)
Microbiota , Probiotics , Humans , Sugars , Double-Blind Method , Albumins/pharmacology
5.
J Oral Microbiol ; 15(1): 2189770, 2023.
Article in English | MEDLINE | ID: mdl-36968295

ABSTRACT

Frequent intake of free sugars is a major risk factor for dental caries, but the immediate influence of sugar intake on the supragingival microbiota remains unknown. We aim to characterize the effect of 14 days of sugar rinsing on the supragingival microbiota. Forty orally and systemically healthy participants rinsed their mouth with a 10% sucrose solution, 6-8 times a day, for 14 days, followed by 14 days without sugar stress. Supragingival plaque samples were collected at baseline, and after 14, and 28 days. The supragingival microbiota was analyzed using 16S rDNA sequencing. Taxonomic classification was performed using the Human Oral Microbiome Database. After 14 days of sugar stress induced by the daily sugar rinses, a significant loss of α-diversity (p = 0.02) and a significant increase in the relative abundance of Actinomyces (6.5% to 9.6%, p = 0.006) and Corynebacterium (6.2% to 9.1%, p = 0.03) species were recorded. In addition, a significant decrease in Streptococcus (10.3% to 6.1%, p = 0.001) species was observed. Sugar-mediated changes returned to baseline conditions 14 days after the last sugar rinse. The present study shows that temporary sugar stress induces loss of diversity and compositional changes to the supragingival microbiota, which are reversible if oral care is maintained.

6.
Pathogens ; 10(4)2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33805208

ABSTRACT

BACKGROUND: The purpose of the present study was to longitudinally characterize the supragingival microbiota throughout a three months period in orally healthy individuals. We tested the hypothesis that the supragingival microbiota shows a high degree of compositional stability, which is resilient against the external perturbation of regular use of probiotics, as long as oral health is maintained. METHODS: The present study was a double-blinded, randomized, placebo-controlled clinical trial. The study population comprised a total of 110 oral and systemic healthy individuals, distributed in a probiotic (n = 55) and placebo (n = 55) group, where the test group consumed tablets with the probiotic strains Lacticaseibacillusrhamnosus (formerly Lactobacillus) PB01 DSM14870 and Latilactobacillus curvatus (formerly Lactobacillus) EB10 DSM32307 for a period of 12 weeks. Supragingival plaque samples and clinical registrations were performed at baseline, and after 4, 8, and 12 weeks, respectively. The supragingival microbiota was characterized by means of 16S rDNA sequencing. Sequences were referenced against the HOMD database. RESULTS: No significant changes of the core microbiota, as expressed by relative abundance of predominant genera and species were evident during the three months observation period in the probiotic or the placebo group. CONCLUSIONS: Data from the present study clearly demonstrate long term compositional stability of the supragingival microbiota as long as oral health is maintained. In addition, the tested probiotics had no augmenting effect on the supragingival microbiota in oral health.

7.
Pathogens ; 10(4)2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33805894

ABSTRACT

BACKGROUND: The purpose of the present investigation was to characterize the effect of probiotics on the composition of the salivary microbiota and salivary levels of inflammation-related proteins during short-term sugar stress. We tested the hypotheses that consumption of probiotics may partly counteract the detrimental influence of sugar stress on oral homeostasis. METHODS: The present study was a five-week, blinded, randomized controlled trial with four study arms-A: sucrose and probiotic (n = 20); B: sucrose and placebo (n = 20); C: xylitol and probiotic (n = 20); D: xylitol and placebo (n = 20). Saliva samples were collected at baseline and after two and five weeks. The salivary microbiota was characterized by means of 16S rDNA sequencing, and sequences were referenced against the Human Oral Microbiome Database (HOMD). Neutrophil gelatinase-associated lipocalin (NGAL) and transferrin levels were quantified using immunoassays. RESULTS: Sugar stress induced a significant increase in the relative abundance of the genus Streptococcus from 29.8% at baseline to 42.9% after two weeks. Changes were transient and were completely reversed three weeks after discontinuation of sugar stress. Xylitol and probiotics alone had no effect on the salivary microbiota, whereas the combination of xylitol and probiotics induced a significant decrease in the relative abundance of Streptococcus species from 37.6% at baseline to 23.0% at week 2. Sugar stress significantly increased salivary transferrin levels, and the effect was partly counteracted by concomitant use of probiotics. CONCLUSIONS: The data clearly demonstrate an impact of combined consumption of xylitol and probiotics on the composition of the salivary microbiota. Future studies are needed to evaluate whether the combined use of xylitol and the probiotic strains tested could have clinically protective effects during periods of sugar stress.

SELECTION OF CITATIONS
SEARCH DETAIL
...