Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Methods Mol Biol ; 2806: 91-100, 2024.
Article in English | MEDLINE | ID: mdl-38676798

ABSTRACT

Pancreatic cancer is associated with a high mortality rate, and there are still very few effective treatment options. Patient-derived xenografts have proven to be invaluable preclinical disease models to study cancer biology and facilitate testing of novel therapeutics. However, the severely immune-deficient mice used to generate standard models lack any functional immune system, thereby limiting their utility as a tool to investigate the tumor-immune cell interface. This chapter will outline a method for establishment of "humanized" patient-derived xenografts, which are reconstituted with human immune cells to imitate the immune-rich microenvironment of pancreatic cancer.


Subject(s)
Disease Models, Animal , Pancreatic Neoplasms , Tumor Microenvironment , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/therapy , Animals , Humans , Mice , Tumor Microenvironment/immunology , Xenograft Model Antitumor Assays/methods , Heterografts , Mice, SCID
2.
Pancreas ; 52(3): e188-e195, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-37751379

ABSTRACT

OBJECTIVE: The objectives of the study are to investigate the sensitivity and specificity of circulating tumor DNA (ctDNA) for the diagnosis of pancreatic cancer and to assess the utility of ctDNA as a prognostic marker in this disease. METHODS: Cell-free DNA was extracted from plasma of patients who underwent endoscopic ultrasound fine-needle aspiration or surgical resections for pancreatic cancer. The cell-free DNA was then analyzed using droplet digital polymerase chain reaction for KRAS G12/13 mutations. Eighty-one patients with pancreatic cancer and 30 patients with benign pancreatic disease were analyzed. RESULTS: ctDNA KRAS G12/13 mutations were detected in 63% of all patients with pancreatic cancer and in 76% of those patients who also had KRAS G12/13 mutations detected in the pancreatic primary. Specificity and tissue concordance were both 100%. Circulating tumor DNA corresponded with tumor size and stage, and high ctDNA was associated with significantly worse prognosis on both univariate and multivariate testing. CONCLUSION: Our study shows that ctDNA is an accurate diagnostic tool and strong prognostic marker in patients with pancreatic cancer. The continued investigation of ctDNA will enable its implementation in clinical practice to optimize the care and survival outcomes of patients with pancreatic cancer.


Subject(s)
Circulating Tumor DNA , Pancreatic Neoplasms , Humans , Circulating Tumor DNA/genetics , Prognosis , Proto-Oncogene Proteins p21(ras)/genetics , Biomarkers, Tumor/genetics , Mutation , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms
3.
Sci Rep ; 13(1): 9663, 2023 06 14.
Article in English | MEDLINE | ID: mdl-37316578

ABSTRACT

Low skeletal muscle index (SMI) and low skeletal muscle radiodensity (SMD) are associated with reduced survival time in pancreatic ductal adenocarcinoma (PDAC). The negative prognostic impact of low SMI and low SMD is often reported as independent of cancer stage when using traditional clinical staging tools. Therefore, this study sought to explore the relationship between a novel marker of tumour burden (circulating tumour DNA) and skeletal muscle abnormalities at diagnosis of PDAC. A retrospective cross-sectional study was conducted in patients who had plasma and tumour tissue samples stored in the Victorian Pancreatic Cancer Biobank (VPCB) at diagnosis of PDAC, between 2015 and 2020. Circulating tumour DNA (ctDNA) of patients with G12 and G13 KRAS mutations was detected and quantified. Pre-treatment SMI and SMD derived from analysis of diagnostic computed tomography imaging was tested for its association to presence and concentration of ctDNA, as well as conventional staging, and demographic variables. The study included 66 patients at PDAC diagnosis; 53% female, mean age 68.7 years (SD ± 10.9). Low SMI and low SMD were present in 69.7% and 62.1% of patients, respectively. Female gender was an independent risk factor for low SMI (OR 4.38, 95% CI 1.23-15.55, p = 0.022), and older age an independent risk factor for low SMD (OR 1.066, 95% CI 1.002-1.135, p = 0.044). No association between skeletal muscle stores and concentration of ctDNA (SMI r = - 0.163, p = 0.192; SMD r = 0.097, p = 0.438) or stage of disease according to conventional clinical staging [SMI F(3, 62) = 0.886, p = 0.453; SMD F(3, 62) = 0.717, p = 0.545] was observed. These results demonstrate that low SMI and low SMD are highly prevalent at diagnosis of PDAC, and suggest they are comorbidities of cancer rather than related to the clinical stage of disease. Future studies are needed to identify the mechanisms and risk factors for low SMI and low SMD at diagnosis of PDAC to aid screening and intervention development.


Subject(s)
Carcinoma, Pancreatic Ductal , Circulating Tumor DNA , Pancreatic Neoplasms , Humans , Female , Aged , Male , Cross-Sectional Studies , Retrospective Studies , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/genetics , Carcinoma, Pancreatic Ductal/diagnosis , Carcinoma, Pancreatic Ductal/genetics , Muscle, Skeletal/diagnostic imaging , Pancreatic Neoplasms
4.
Methods Mol Biol ; 2691: 43-54, 2023.
Article in English | MEDLINE | ID: mdl-37355536

ABSTRACT

Patient-derived xenografts (PDXs) are valuable models to study cancer biology, behavior, and response to therapies in vivo. Pancreatic cancer is an aggressive and treatment-resistant disease, and typical biopsies are often of low cellular yield and therefore present challenges for the creation of PDXs. This chapter will describe a method to establish PDX models from tissue biopsies obtained via endoscopic ultrasound-guided fine-needle aspiration, a relatively noninvasive technique which compared to surgery is available to pancreatic cancer patients at all stages of disease. Furthermore, we also describe methods to incorporate "humanization" of PDXs via reconstitution with human immune cells, thus mimicking the immune cell-rich microenvironment of pancreatic tumors.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Humans , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/diagnostic imaging , Carcinoma, Pancreatic Ductal/pathology , Endoscopic Ultrasound-Guided Fine Needle Aspiration/methods , Disease Models, Animal , Inflammation , Tumor Microenvironment , Pancreatic Neoplasms
5.
Proc Natl Acad Sci U S A ; 119(42): e2213744119, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36215509

ABSTRACT

Acute and chronic pancreatitis, the latter associated with fibrosis, are multifactorial inflammatory disorders and leading causes of gastrointestinal disease-related hospitalization. Despite the global health burden of pancreatitis, currently, there are no effective therapeutic agents. In this regard, the protease A Disintegrin And Metalloproteinase 17 (ADAM17) mediates inflammatory responses through shedding of bioactive inflammatory cytokines and mediators, including tumor necrosis factor α (TNFα) and the soluble interleukin (IL)-6 receptor (sIL-6R), the latter of which drives proinflammatory IL-6 trans-signaling. However, the role of ADAM17 in pancreatitis is unclear. To address this, Adam17ex/ex mice-which are homozygous for the hypomorphic Adam17ex allele resulting in marked reduction in ADAM17 expression-and their wild-type (WT) littermates were exposed to the cerulein-induced acute pancreatitis model, and acute (1-wk) and chronic (20-wk) pancreatitis models induced by the cigarette smoke carcinogen nicotine-derived nitrosamine ketone (NNK). Our data reveal that ADAM17 expression was up-regulated in pancreatic tissues of animal models of pancreatitis. Moreover, the genetic (Adam17ex/ex mice) and therapeutic (ADAM17 prodomain inhibitor [A17pro]) targeting of ADAM17 ameliorated experimental pancreatitis, which was associated with a reduction in the IL-6 trans-signaling/STAT3 axis. This led to reduced inflammatory cell infiltration, including T cells and neutrophils, as well as necrosis and fibrosis in the pancreas. Furthermore, up-regulation of the ADAM17/IL-6 trans-signaling/STAT3 axis was a feature of pancreatitis patients. Collectively, our findings indicate that the ADAM17 protease plays a pivotal role in the pathogenesis of pancreatitis, which could pave the way for devising novel therapeutic options to be deployed against this disease.


Subject(s)
Nitrosamines , Pancreatitis , ADAM17 Protein/genetics , ADAM17 Protein/metabolism , Acute Disease , Animals , Carcinogens , Ceruletide/toxicity , Cytokines , Disintegrins , Endopeptidases , Fibrosis , Interleukin-6/genetics , Interleukin-6/metabolism , Ketones , Mice , Nicotine , Pancreatitis/drug therapy , Pancreatitis/genetics , Peptide Hydrolases , Tumor Necrosis Factor-alpha/metabolism
6.
Cells ; 11(19)2022 10 10.
Article in English | MEDLINE | ID: mdl-36231137

ABSTRACT

Background: KRAS G12D mutation subtype is present in over 40% of pancreatic ductal adenocarcinoma (PDAC), one of the leading global causes of cancer death. This retrospective cohort study aims to investigate whether detection of the KRAS G12D mutation subtype in PDAC patients is a determinant of prognosis across all stages of disease. Methods: We reviewed the medical records of 231 patients presenting with PDAC at a large tertiary hospital, and compared survival using the Kaplan Meier, log-rank test and Cox proportional hazards regression model. Results: KRAS G12D mutation subtype was not significantly associated with poorer survival compared across the whole population of PDAC patients (p = 0.107; HR 1.293 95% CI (0.946-1.767)). However, KRAS G12D patients who were resectable had a shorter median survival time of 356 days compared to all other genotypes (median survival 810 days) (p = 0.019; HR 1.991 95% CI (1.121-3.537)). Conclusions: KRAS G12D patients who were resectable at diagnosis had shorter survival compared to all other PDAC patients. These data suggest that KRAS G12D may be a clinically useful prognostic biomarker of PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Biomarkers , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Humans , Mutation/genetics , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Retrospective Studies , Pancreatic Neoplasms
7.
JCO Precis Oncol ; 6: e2200171, 2022 06.
Article in English | MEDLINE | ID: mdl-35772049
9.
Front Oncol ; 11: 770022, 2021.
Article in English | MEDLINE | ID: mdl-34956889

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer death and lacks effective treatment options. Diagnostic endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) biopsies represent an appealing source of material for molecular analysis to inform targeted therapy, as they are often the only available tissue for patients presenting with PDAC irrespective of disease stage. However, EUS-FNA biopsies are typically not used to screen for precision medicine studies due to concerns about low tissue yield and quality. Epidermal growth factor receptor (EGFR) inhibition has shown promise in clinical trials of unselected patients with advanced pancreatic cancer, but has not been prospectively tested in KRAS wild-type patients. Here, we examine the clinical utility of EUS-FNA biopsies for molecular screening of KRAS wild-type PDAC patients for targeted anti-EGFR therapy to assess the feasibility of this approach. PATIENTS AND METHODS: Fresh frozen EUS-FNA or surgical biopsies from PDAC patient tumours were used to screen for KRAS mutations. Eligible patients with recurrent, locally advanced, or metastatic KRAS wild-type status who had received at least one prior line of chemotherapy were enrolled in a pilot study (ACTRN12617000540314) and treated with panitumumab at 6mg/kg intravenously every 2 weeks until progression or unacceptable toxicity. The primary endpoint was 4-month progression-free survival (PFS). RESULTS: 275 patient biopsies were screened for KRAS mutations, which were detected in 88.3% of patient samples. 8 eligible KRAS wild-type patients were enrolled onto the interventional study between November 2017 and December 2020 and treated with panitumumab. 4-month PFS was 14.3% with no objective tumour responses observed. The only grade 3/4 treatment related toxicity observed was hypomagnesaemia. CONCLUSIONS: This study demonstrates proof-of-principle feasibility to molecularly screen patients with pancreatic cancer for targeted therapies, and confirms diagnostic EUS-FNA biopsies as a reliable source of tumour material for molecular analysis. Single agent panitumumab was safe and tolerable but led to no objective tumour responses in this population.

10.
Endosc Ultrasound ; 10(5): 335-343, 2021.
Article in English | MEDLINE | ID: mdl-34558422

ABSTRACT

BACKGROUND AND OBJECTIVES: Patients with locally advanced or metastatic pancreatic ductal adenocarcinoma (A-PDAC) are not candidates for surgical resection and are often offered palliative chemotherapy. The ready availability of a safe and effective tumor sampling technique to provide material for both diagnosis and comprehensive genetic profiling is critical for informing precision medicine in A-PDAC, thus potentially increasing survival. The aim of this study is to examine the feasibility and benefits of routine comprehensive genomic profiling (CGP) of A-PDAC using EUS-FNA material. METHODS: This is a prospective cohort study to test the clinical utility of fresh frozen or archival EUS-FNA samples in providing genetic material for CGP. The results of the CGP will be reviewed at a molecular tumor board. The proportion of participants that have a change in their treatment recommendations based on their individual genomic profiling will be assessed. Correlations between CGP and stage, prognosis, response to treatment and overall survival will also be investigated. This study will open to recruitment in 2020, with a target accrual of 150 A-PDAC patients within 36 months, with a 2-year follow-up. It is expected that the majority of participants will be those who have already consented for their tissue to be biobanked in the Victorian Pancreatic Cancer Biobank at the time of diagnostic EUS-FNA. Patients without archival or biobanked material that is suitable for CGP may be offered a EUS-FNA procedure for the purposes of obtaining fresh frozen material. DISCUSSION: This trial is expected to provide crucial data regarding the feasibility of routine CGP of A-PDAC using EUS-FNA material. It will also provide important information about the impact of this methodology on patients' survival.

11.
Clin Cancer Res ; 27(21): 5900-5911, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34400416

ABSTRACT

PURPOSE: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a poor prognosis, and current diagnostic tests have suboptimal sensitivity. Incorporating standard cytology with targeted transcriptomic and mutation analysis may improve upon the accuracy of diagnostic biopsies, thus reducing the burden of repeat procedures and delays to treatment initiation. EXPERIMENTAL DESIGN: We reviewed the accuracy of 308 endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) diagnostic PDAC biopsies using a large multicenter clinical and biospecimen database, then performed RNA sequencing on 134 EUS-FNA biopsies spanning all stages of disease. We identified a transcriptomic diagnostic gene signature that was validated using external datasets and 60 further diagnostic EUS-FNAs. KRAS digital droplet PCR (ddPCR) analysis was performed and correlated with signature gene expression. RESULTS: The sensitivity of EUS-FNA cytology in diagnosing solid pancreatic masses in our retrospective cohort of 308 patients was 78.6% (95% confidence interval, 73.2%-83.2%). KRAS mutation analysis and our custom transcriptomic signature significantly improved upon the diagnostic accuracy of standard cytology to 91.3% in external validation sets and 91.6% in our validation cohort (n = 60). Exploratory ddPCR analysis of KRAS-mutant allele fraction (MAF%) correlated closely to signature performance and may represent a novel surrogate marker of tumor cellularity in snap-frozen EUS-FNA biopsies. CONCLUSIONS: Our findings support snap-frozen EUS-FNA biopsies as a feasible tissue source for the integrated genomic and transcriptomic analysis of patients presenting with PDAC from all tumor stages, including cases with nondiagnostic cytology. Our transcriptome-derived genetic signature in combination with tissue KRAS mutation analysis significantly improves upon the diagnostic accuracy of current standard procedures, and has potential clinical utility in improving the speed and accuracy of diagnosis for patients presenting with PDAC.


Subject(s)
Endoscopic Ultrasound-Guided Fine Needle Aspiration , Mutation , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Transcriptome , DNA Mutational Analysis , Humans , Retrospective Studies , Sensitivity and Specificity
12.
Oncogene ; 40(41): 6007-6022, 2021 10.
Article in English | MEDLINE | ID: mdl-34400766

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) has an extremely poor prognosis, and is plagued by a paucity of targeted treatment options and tumour resistance to chemotherapeutics. The causal link between chronic inflammation and PDAC suggests that molecular regulators of the immune system promote disease pathogenesis and/or therapeutic resistance, yet their identity is unclear. Here, we couple endoscopic ultrasound-guided fine-needle aspiration, which captures tumour biopsies from all stages, with whole transcriptome profiling of PDAC patient primary tumours to reveal enrichment of the innate immune Toll-like receptor 2 (TLR2) molecular pathway. Augmented TLR2 expression associated with a 4-gene "TLR2 activation" signature, and was prognostic for survival and predictive for gemcitabine-based chemoresistance. Furthermore, antibody-mediated anti-TLR2 therapy suppressed the growth of human PDAC tumour xenografts, independent of a functional immune system. Our results support TLR2-based therapeutic targeting for precision medicine in PDAC, with further clinical utility that TLR2 activation is prognostic and predictive for chemoresponsiveness.


Subject(s)
Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/metabolism , Deoxycytidine/analogs & derivatives , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Toll-Like Receptor 2/metabolism , Animals , Carcinoma, Pancreatic Ductal/pathology , Cell Growth Processes/drug effects , Cell Growth Processes/physiology , Cell Line, Tumor , Deoxycytidine/pharmacology , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Molecular Targeted Therapy , Pancreatic Neoplasms/pathology , Prognosis , Survival Analysis , Toll-Like Receptor 2/antagonists & inhibitors , Xenograft Model Antitumor Assays , Gemcitabine
13.
Methods Mol Biol ; 2279: 165-173, 2021.
Article in English | MEDLINE | ID: mdl-33683693

ABSTRACT

Patient-derived xenografts (PDXs) are created by implanting human tumor tissue or cells into immunodeficent mice, and enable the study of tumor biology, biomarkers and response to therapy in vivo. This chapter describes a method for lung adenocarcinoma (LAC) PDX generation using subcutaneous implantation of tumor tissue and cell suspensions and incorporating the humanization of PDX models by reconstitution with human immune cells.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Neoplasm Transplantation , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Animals , Female , Heterografts , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Male , Mice , Mice, Inbred NOD , Mice, SCID
14.
Cancers (Basel) ; 12(12)2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33348809

ABSTRACT

Purpose: Pancreatic ductal adenocarcinoma (PDAC) has the lowest five-year survival rate of all cancers in the United States. Programmed death 1 receptor (PD-1)-programmed death ligand 1 (PD-L1) immune checkpoint inhibition has been unsuccessful in clinical trials. Myeloid-derived suppressor cells (MDSCs) are known to block anti-tumor CD8+ T cell immune responses in various cancers including pancreas. This has led us to our objective that was to develop a clinically relevant in vitro organoid model to specifically target mechanisms that deplete MDSCs as a therapeutic strategy for PDAC. Method: Murine and human pancreatic ductal adenocarcinoma (PDAC) autologous organoid/immune cell co-cultures were used to test whether PDAC can be effectively treated with combinatorial therapy involving PD-1 inhibition and MDSC depletion. Results: Murine in vivo orthotopic and in vitro organoid/immune cell co-culture models demonstrated that polymorphonuclear (PMN)-MDSCs promoted tumor growth and suppressed cytotoxic T lymphocyte (CTL) proliferation, leading to diminished efficacy of checkpoint inhibition. Mouse- and human-derived organoid/immune cell co-cultures revealed that PD-L1-expressing organoids were unresponsive to nivolumab in vitro in the presence of PMN-MDSCs. Depletion of arginase 1-expressing PMN-MDSCs within these co-cultures rendered the organoids susceptible to anti-PD-1/PD-L1-induced cancer cell death. Conclusions: Here we use mouse- and human-derived autologous pancreatic cancer organoid/immune cell co-cultures to demonstrate that elevated infiltration of polymorphonuclear (PMN)-MDSCs within the PDAC tumor microenvironment inhibit T cell effector function, regardless of PD-1/PD-L1 inhibition. We present a pre-clinical model that may predict the efficacy of targeted therapies to improve the outcome of patients with this aggressive and otherwise unpredictable malignancy.

15.
Lancet Oncol ; 20(9): 1306-1315, 2019 09.
Article in English | MEDLINE | ID: mdl-31378459

ABSTRACT

BACKGROUND: Rationale exists for combined treatment with immune checkpoint inhibitors and poly (ADP-ribose) polymerase (PARP) inhibitors in a variety of solid tumours. This study aimed to investigate the safety and antitumour effects of pamiparib, an oral PARP 1/2 inhibitor, combined with tislelizumab, a humanised anti-PD-1 monoclonal antibody, in patients with advanced solid tumours and to determine the optimum doses for further evaluation. METHODS: We did a multicentre, open-label, phase 1a/b study at five academic sites or community oncology centres in Australia. We recruited adults (aged ≥18 years) with advanced solid tumours who had received one or more previous lines of therapy, with an Eastern Cooperative Oncology Group performance score of 1 or less, and a life expectancy of 12 weeks or more. Patients were enrolled into one of five dose-escalation cohorts, with dose-escalation done in a 3 + 3 design. Cohorts 1-3 received intravenous tislelizumab 2 mg/kg every 3 weeks plus 20, 40, or 60 mg oral pamiparib twice daily, respectively; cohorts 4 and 5 received 200 mg intravenous tislelizumab every 3 weeks plus 40 or 60 mg oral pamiparib twice daily, respectively. The primary endpoints of the phase 1a dose-escalation part of the study were safety and tolerability, including the occurrence of dose-limiting toxicities and determination of the maximum tolerated dose and recommended phase 2 dose. All primary endpoints were analysed in the safety analysis set, which included all patients who received at least one dose of tislelizumab or pamiparib, with the exception of the occurrence of dose-limiting toxicities, which was analysed in the dose-limiting toxicity analysis set, which included all patients who received at least 90% of the first scheduled tislelizumab dose and at least 75% of scheduled pamiparib doses, or who had a dose-limiting toxicity event during cycle 1. Reported here are results of the phase 1a dose-escalation stage of the trial. This trial is registered with ClinicalTrials.gov, number NCT02660034, and is ongoing. FINDINGS: Between Jan 22, 2016, and May 16, 2017, we enrolled 49 patients (median age 63 years [IQR 55-67]), all of whom received at least one dose of pamiparib or tiselzumab. Four patients had dose-limiting toxicities (intractable grade 2 nausea [n=1] and grade 3 rash [n=1] in cohort 4, and grade 2 nausea and vomiting [n=1] and grade 4 immune-mediated hepatitis [n=1] in cohort 5). The recommended phase 2 dose was tislelizumab 200 mg every 3 weeks plus pamiparib 40 mg twice daily (the dose given in cohort 4). The most common treatment-emergent adverse events were nausea (in 31 [63%] of 49 patients), fatigue (26 [53%]), diarrhoea (17 [35%]), and vomiting (15 [31%]). 23 (47%) of 49 patients had immune-related adverse events, of whom nine (39%) had asymptomatic grade 3-4 hepatic immune-related adverse events, which were reversible with corticosteroid treatment. The most common adverse event of grade 3 or worse severity was anaemia (in six [12%] patients) and no grade 5 adverse events were reported. Hepatitis or autoimmune hepatitis was the only serious adverse event to occur in two or more patients (in four [8%] patients). At a median follow-up of 8·3 months (IQR 4·8-12·8), ten (20%) of 49 patients achieved an objective response according to Response Evaluation Criteria in Solid Tumours (RECIST) version 1.1, including two complete responses and eight partial responses. INTERPRETATION: Pamiparib with tislelizumab was generally well tolerated and associated with antitumour responses and clinical benefit in patients with advanced solid tumours supporting further investigation of the combination of pamiparib with tislelizumab. FUNDING: BeiGene.


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Fluorenes/administration & dosage , Neoplasms/drug therapy , Poly(ADP-ribose) Polymerase Inhibitors/administration & dosage , Aged , Antibodies, Monoclonal, Humanized/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Cohort Studies , Dose-Response Relationship, Drug , Fatigue/chemically induced , Fatigue/pathology , Female , Fluorenes/adverse effects , Humans , Male , Maximum Tolerated Dose , Middle Aged , Nausea/chemically induced , Nausea/pathology , Neoplasm Staging , Neoplasms/classification , Neoplasms/pathology , Poly(ADP-ribose) Polymerase Inhibitors/adverse effects , Progression-Free Survival , Treatment Outcome
16.
Cancers (Basel) ; 10(2)2018 Jan 27.
Article in English | MEDLINE | ID: mdl-29382047

ABSTRACT

Advanced pancreatic cancer (PC) is an aggressive malignancy with few effective therapeutic options. While the evolution of precision medicine in recent decades has changed the treatment landscape in many cancers, at present no targeted therapies are used in the routine management of PC. Only a minority of patients with PC present with surgically resectable disease, and in the remainder obtaining high quality biopsy material for both diagnosis and molecular testing can prove challenging. Endoscopic ultrasound-guided fine needle aspiration (EUS FNA) is a widely used diagnostic procedure in PC, and allows tumour sampling in patients with both early and late stage disease. This review will provide an update on the role of EUS FNA as a diagnostic tool, as well as a source of genetic material which can be used both for molecular analysis and for the creation of valuable preclinical disease models. We will also consider relevant clinical applications of EUS FNA in the management of PC, and the path towards bringing precision medicine closer to the clinic in this challenging disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...