Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 14(28): 32729-32737, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35797515

ABSTRACT

Fabrication of ultrathin films of dielectric (with particular reference to materials with high dielectric constants) materials has significance in many advanced technological applications including hard protective coatings, sensors, and next-generation logic devices. Current state-of-the-art in microelectronics for fabricating these thin films is a combination of atomic layer deposition and photolithography. As feature size decreases and aspect ratios increase, conformality of the films becomes paramount. Here, we show a polymer brush template-assisted deposition of highly conformal, ultrathin (sub 5 nm) high-κ dielectric metal oxide films (hafnium oxide and zirconium oxide) on topographically patterned silicon nitride substrates. This technique, using hydroxyl terminated poly-4-vinyl pyridine (P4VP-OH) as the polymer brush, allows for conformal deposition with uniform thickness along the trenches and sidewalls of the substrate. Metal salts are infiltrated into the grafted monolayer polymer brush films via solution deposition. Tailoring specific polymer interfacial chemistries for ion infiltration combined with subsequent oxygen plasma treatment enabled the fabrication of high-quality sub 5 nm metal oxide films.

2.
Macromolecules ; 54(3): 1203-1215, 2021 Feb 09.
Article in English | MEDLINE | ID: mdl-34276069

ABSTRACT

The self-assembly of ultra-high molecular weight (UHMW) block copolymers (BCPs) remains a complex and time-consuming endeavor owing to the high kinetic penalties associated with long polymer chain entanglement. In this work, we report a unique strategy of overcoming these kinetic barriers through precision solvent annealing of an UHMW polystyrene-block-poly(2-vinylpyridine) BCP system (M w: ∼800 kg/mol) by fast swelling to very high levels of solvent concentration (ϕs). Phase separation on timescales of ∼10 min is demonstrated once a thickness-dependent threshold ϕs value of ∼0.80-0.86 is achieved, resulting in lamellar feature spacings of over 190 nm. The threshold ϕs value was found to be greater for films with higher dry thickness (D 0) values. Tunability of the domain morphology is achieved through controlled variation of both D 0 and ϕs, with the kinetically unstable hexagonal perforated lamellar (HPL) phase observed at ϕs values of ∼0.67 and D 0 values of 59-110 nm. This HPL phase can be controllably induced into an order-order transition to a lamellar morphology upon further increase of ϕs to 0.80 or above. As confirmed by grazing-incidence small-angle X-ray scattering, the lateral ordering of the lamellar domains is shown to improve with increasing ϕs up to a maximum value at which the films transition to a disordered state. Thicker films are shown to possess a higher maximum ϕs value before transitioning to a disordered state. The swelling rate is shown to moderately influence the lateral ordering of the phase-separated structures, while the amount of hold time at a particular value of ϕs does not notably enhance the phase separation process. These large period self-assembled lamellar domains are then employed to facilitate pattern transfer using a liquid-phase infiltration method, followed by plasma etching, generating ordered, high aspect ratio Si nanowall structures with spacings of ∼190 nm and heights of up to ∼500 nm. This work underpins the feasibility of a room-temperature, solvent-based annealing approach for the reliable and scalable fabrication of sub-wavelength nanostructures via BCP lithography.

3.
ACS Nano ; 15(6): 9550-9558, 2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34042425

ABSTRACT

We demonstrate the fabrication of sub-20 nm gate-all-around silicon (Si) nanowire field effect transistor structures using self-assembly. To create nanopatterned Si feature arrays, a block-copolymer-assisted hard mask approach was utilized using a topographically patterned substrate with well-defined Si3N4 features for graphoepitaxially alignment of the self-assembled patterns. Microphase-separated long-range ordered polystyrene-b-poly(ethylene oxide) (PS-b-PEO) block-copolymer-derived dot and line nanopatterns were achieved by a thermo-solvent approach within the substrate topographically defined channels of various widths and lengths. Solvent annealing parameters (temperature, annealing time, etc.) were varied to achieve the desired patterns. The BCP structures were modified by anhydrous ethanol to facilitate insertion of iron oxide features within the graphoepitaxial trenches that maintained the parent BCP arrangements. Vertical and horizontal ordered Si nanowire structures within trenches were fabricated using the iron oxide features as hard masks in an inductively coupled plasma (ICP) etch process. Cross-sectional micrographs depict wires of persistent width and flat sidewalls indicating the effectiveness of the mask. The aspect ratios could be varied by varying etch times. The sharp boundaries between the transistor components was also examined through the elemental mapping.

4.
Langmuir ; 37(5): 1932-1940, 2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33507754

ABSTRACT

We present a highly scalable, room-temperature strategy for fabricating vertical silicon nanotube arrays derived from a toroidal micelle pattern via a water vapor-induced block copolymer (BCP) self-assembly mechanism. A polystyrene-b-poly(ethylene oxide) (PS-b-PEO) BCP system can be self-assembled into toroidal micelle structures (diameter: 400-600 nm) on a PS-OH-modified substrate in a facile manner contrasting with other complex processes described in the literature. It was found that a minimum PS-b-PEO thickness of ∼86 nm is required for the toroidal self-assembly. Furthermore, a water vapor annealing treatment at room conditions (∼25 °C, 60 min) is shown to vastly enhance the ordering of micellar structures. A liquid-phase infiltration process was used to generate arrays of iron and nickel oxide nanorings. These oxide structures were used as templates for pattern transfer into the underlying silicon substrate via plasma etching, resulting in large-area 3D silicon nanotube arrays. The overall simplicity of this technique, as well as the wide potential versatility of the resulting metal structures, proves that such room-temperature synthesis routes are a viable pathway for complex nanostructure fabrication, with potential applicability in fields such as optics or catalysis.

5.
Langmuir ; 36(41): 12394-12402, 2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33021792

ABSTRACT

In this work, we show that in order to fabricate coherent titania (TiO2) films with precise thickness control, it is critical to generate a complete polymer brush monolayer. To date, demonstrations of such dense polymer monolayer formation that can be utilized for inorganic infiltration have been elusive. We describe a versatile bottom-up approach to covalently and rapidly (60 s processing) graft hydroxyl-terminated poly(2-vinyl pyridine) (P2VP-OH) polymers on silicon substrates. P2VP-OH monolayer films of varying thicknesses can subsequently be used to fabricate high-quality TiO2 films. Our innovative strategy is based upon room-temperature titanium vapor-phase infiltration of the grafted P2VP-OH polymer brushes that can produce TiO2 nanofilms of 2-4 nm thicknesses. Crucial parameters are explored, including molecular weight and solution concentration for grafting dense P2VP-OH monolayers from the liquid phase with high coverage and uniformity across wafer-scale areas (>2 cm2). Additionally, we compare the P2VP-OH polymer systems with another reactive polymer, poly(methyl methacrylate)-OH, and a relatively nonreactive polymer, poly(styrene)-OH. Furthermore, we prove the latter to be effective for surface blocking and deactivation. We show a simple process to graft monolayers for polymers that are weakly interacting with one another but more challenging for reactive systems. Our methodology provides new insight into the rapid grafting of polymer brushes and their ability to form TiO2 films. We believe that the results described herein are important for further expanding the use of reactive and unreactive polymers for fields including area-selective deposition, solar cell absorber layers, and antimicrobial surface coatings.

6.
Nanomaterials (Basel) ; 10(4)2020 Apr 10.
Article in English | MEDLINE | ID: mdl-32290300

ABSTRACT

Direct alcohol fuel cells are highly promising as efficient power sources for various mobile and portable applications. However, for the further advancement of fuel cell technology it is necessary to develop new, cost-effective Pt-free electrocatalysts that could provide efficient alcohol oxidation and also resist cross-over poisoning. Here, we report new electrocatalytic materials for ethylene glycol oxidation, which are based on AuAg linear nanostructures. We demonstrate a low temperature tunable synthesis that enables the preparation of one dimensional (1D) AuAg nanostructures ranging from nanowires to a new nano-necklace-like structure. Using a two-step method, we showed that, by aging the initial reaction mixture at various temperatures, we produced ultrathin AuAg nanowires with a diameter of 9.2 ± 2 and 3.8 ± 1.6 nm, respectively. These nanowires exhibited a high catalytic performance for the electro-oxidation of ethylene glycol with remarkable poisoning resistance. These results highlight the benefit of 1D metal alloy-based nanocatalysts for fuel cell applications and are expected to make an important contribution to the further development of fuel cell technology.

7.
Eur J Pharm Biopharm ; 144: 139-153, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31536784

ABSTRACT

Trehalose is commonly used as a protein stabilizer in spray dried protein formulations delivered via the pulmonary route. Spray dried trehalose formulations are highly hygroscopic, which makes them prone to deliquescence and recrystallization when exposed to moisture, leading to impairment in aerosolization performance. The main aim of this study was to investigate and compare the effect of hydrophobic amino acids (i.e. L-leucine and L-isoleucine) in enhancing aerosolization performance and in mitigating moisture-induced changes in spray dried trehalose formulations. Trehalose was spray dried with 20-60% w/w of amino acid (i.e. L-leucine or L-isoleucine). The spray dried formulations were stored at 25 °C/50% RH for 28 days. Solid state characterization and in vitro aerosolization performance studies were performed on the spray dried formulations before and after storage. The addition of 20-60% w/w of amino acid (i.e. L-leucine or L-isoleucine) improved the emitted fractions of spray dried trehalose formulations from a dry powder inhaler. However, ≥ 40% w/w of L-leucine/L-isoleucine was needed to prevent recrystallization of trehalose in the formulations when exposed to 25 °C/50% RH for 28 days. X-ray photoelectron spectroscopy (XPS) demonstrated that samples with 40-60% w/w L-isoleucine had more amino acid on the surfaces of the particles compared to their L-leucine counterparts. This may explain the greater ability of the L-isoleucine (40-60% w/w) samples to cope with elevated humidity compared to L-leucine samples of the same concentrations, as observed in the dynamic vapour sorption (DVS) studies. In conclusion, this study demonstrated that both L-leucine and L-isoleucine were effective in enhancing aerosolization performance and mitigating moisture-induced reduction in aerosolization performance in spray dried trehalose formulations. L-isoleucine proved to be superior to L-leucine in terms of its moisture protectant effect when incorporated at the same concentration in the formulations.


Subject(s)
Amino Acids/chemistry , Trehalose/chemistry , Administration, Inhalation , Aerosols/chemistry , Chemistry, Pharmaceutical/methods , Drug Compounding/methods , Dry Powder Inhalers/methods , Humidity , Hydrophobic and Hydrophilic Interactions , Leucine/chemistry , Powders/chemistry , Wettability/drug effects
8.
Nanotechnology ; 29(35): 355302, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-29873635

ABSTRACT

Self-assembling block copolymer (BCP) patterns are one of the main contenders for the fabrication of nanopattern templates in next generation lithography technology. Transforming these templates to hard mark materials is key for pattern transfer and in some cases, involves selectively removing one block from the nanopattern. For poly(styrene)-block-poly(4-vinylpyridine) (PS-b-P4VP), a high χ BCP system which could be potentially incorporated into semiconductor nanofabrication, this selective removal is predominantly done by a wet etch/activation process. Conversely, this process has numerous disadvantages including lack of control and high generation of waste leading to high cost. For these reasons, our motivation was to move away from the wet etch process and optimise a dry etch which would overcome the limitations associated with the activation process. The work presented herein shows the development of a selective plasma etch process for the removal of P4VP cores from PS-b-P4VP nanopatterned film. Results have shown that a nitrogen reactive ion etch plasma has a selectivity for P4VP of 2.2:1 and suggest that the position of the nitrogen in the aromatic ring of P4VP plays a key role in this selectivity. In situ plasma etching and x-ray photoelectron spectrometry measurements were made without breaking vacuum, confirming that the nitrogen plasma has selectivity for removal of P4VP over PS.

9.
ACS Appl Mater Interfaces ; 9(15): 13751-13760, 2017 Apr 19.
Article in English | MEDLINE | ID: mdl-28383896

ABSTRACT

Rare earth oxides (REOs) are attracting attention for use as cost-effective, high-performance dropwise condensers because of their favorable thermal properties and robust nature. However, to engineer a suitable surface for industrial applications, the mechanism governing wetting must be first fully elucidated. Recent studies exploring the water-wetting state of REOs have suggested that these oxides are intrinsically hydrophobic owing to the unique electronic structure of the lanthanide series. These claims have been countered with evidence that they are inherently hydrophilic and that adsorption of contaminants from the environment is responsible for the apparent hydrophobic nature of these surfaces. Here, using X-ray photoelectron spectroscopy and dynamic water contact angle measurements, we provide further evidence to show that REOs are intrinsically hydrophilic, with ceria demonstrating advancing water contact angles of ≈6° in a clean surface state and similar surface energies to two transition metal oxides (≳72 mJ/m2). Using two model volatile species, it is shown that an adsorption mechanism is responsible for the apparent hydrophobic property observed in REOs as well as in transition metal oxides and silica. This is correlated with the screening of the polar surface energy contribution of the underlying oxide with apparent surface energies reduced to <40 mJ/m2 for the case of nonane adsorption. Moreover, we show that the degree of surface hydroxylation plays an important role in the observed contact angle hysteresis with the receding contact angle of ceria increasing from ∼10° to 45° following thermal annealing in an inert atmosphere. Our findings suggest that high atomic number metal oxides capable of strongly adsorbing volatile species may represent a viable paradigm toward realizing robust surface coating for industrial condensers if certain challenges can be overcome.

10.
Phys Chem Chem Phys ; 19(4): 2805-2815, 2017 Jan 25.
Article in English | MEDLINE | ID: mdl-28067366

ABSTRACT

Molecular self-assembling block copolymers (BCPs) have shown promise as a next generation bottom-up lithography technology. However, a critical step in advancing this approach is the elimination of polymer dewetting due to bulk solvent nucleation and thermodynamically driven film rupture that can occur during the solvent vapor annealing process. We report on the pattern formation via phase segregation of spin coated diblock copolymer films through the investigation of annealing parameters in the limit of high solvent vapor saturation conditions that results in wafer-scale patterning without observing polymer dewetting defects. Specifically, the work addresses polymer dewetting in diblock copolymer nanodot templates through the use of a "neutral" functionalization layer and the development of a custom-built solvent vapor annealing chamber to precisely control saturation conditions. Furthermore, the long anneal times (4 h) using a standard static solvent vapor annealing procedure were reduced to ∼15-30 minutes with our dynamic solvent vapor annealing system for the high χ, cylindrical forming poly(styrene)-block-poly(4-vinyl-pyridine) [PS-b-P4VP] diblock copolymer system. We discuss the kinetic mechanism governing the phase segregation process that highlights the small processing window bounded by long phase segregation timescales (≳1 min) on one side and the initiation of polymer film dewetting on the other. These results demonstrate a key step towards realizing a high fidelity, low cost BCP patterning technique for large-scale "bottom-up" feature definition at nanometer length scales.

SELECTION OF CITATIONS
SEARCH DETAIL
...