Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 49(24): 8238-8246, 2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32510087

ABSTRACT

The lanthanide complexes EuL3, GdL3, YbL3 and LuL3 of the N,N'-bis(2-hydroxy-di-3,5-tert-butylphenyl)amine were prepared. The X-Ray crystal structures of GdL3 and LuL3 demonstrated a nine-coordinate sphere with three ligand molecules under their anionic diamagnetic form (Cat-N-BQ)-. The complexes showed three oxidation events (Eox11/2 = 0.15-0.16 V, E1/22 = 0.51-55 V, and E1/23 = 0.75-0.78 V vs. Fc+/Fc) via cyclic voltammetry, corresponding to the successive oxidation of the aminophenolate moeities to iminosemiquinone species. The complexes GdL3 and YbL3 were characterized by EPR spectroscopy, allowing for the determination of the zero field splitting (ZFS) parameters in the first case. The monocations (LnL3)+ and monoanions (LnL3)- were electrochemically generated (Ln = Eu, Gd, Yb, Lu), as well as the dications YbL32+ and LuL32+. The spins are antiferromagnetically exchange coupled in the diradical species LuL32+ (|D| = 260 MHz, E = 0). All the complexes (incl. neutral) possess a strong absorption band in the NIR region (730-840 nm, ε > 19 mM-1 cm-1) corresponding to ligand-based transitions.

2.
J Phys Chem A ; 124(4): 633-641, 2020 Jan 30.
Article in English | MEDLINE | ID: mdl-31880457

ABSTRACT

In this publication, we propose a new set of reactivity/selectivity descriptors, derived within a Rayleigh-Schrödinger perturbation theory framework, for chemical systems undergoing an electrostatic (point-charge) perturbation. From the electron density polarization at first order, qualitative insight on reactivity is retrieved, while more quantitative information (noteworthy selectivity) can be obtained from either the second-order energy response or the number of shifted electrons under perturbation. Noteworthily, only a small number of excitations contribute significantly to the overall responses to perturbation, suggesting chemical reactivity could be foreseen by a careful scrutiny of the electron density reorganization upon excitation.

3.
Inorg Chem ; 40(18): 4793-7, 2001 Aug 27.
Article in English | MEDLINE | ID: mdl-11511231

ABSTRACT

The synthesis of a new sandwich lutetium(III) bisphthalocyanine substituted with hexylthio groups (1), [(C6H1)S)8-Pc]2Lu, is described. The compound is very soluble in most common organic solvents and has been fully characterized (elemental analysis, IR, 1H and 13C NMR, UV-vis spectroscopy, mass spectrometry). The chemically oxidized and reduced forms have been formed and characterized. The crystal structure of the compound (1) has been determined by X-ray diffraction on a single crystal. It crystallizes in the monoclinic space group C2/c with a = 31.558(2) A, b = 32.755(2) A, c = 20.489(1) A, beta = 127.119(1) degrees, and Z = 4. The temperature dependence of the magnetic susceptibility, measured on polycrystalline samples and in the range 6-300 K, is in agreement with one unpaired electron per molecular unit as found for the unsubstituted derivative. The magnetic results can be modeled assuming one-dimensional chain of spin S = 1/2 with g = 2.04 and an antiferromagnetic coupling (J = -11.83 cm(-1), H = -2JSigmaSiSj).

5.
Inorg Chem ; 39(24): 5510-4, 2000 Nov 27.
Article in English | MEDLINE | ID: mdl-11154567

ABSTRACT

This paper reports the synthesis, crystal structures, and magnetic properties of two copper(II) complexes (1, 2) of general formula Cu(tfac)2(radical)2 (tfac = trifluoroacetate; radical = (1) 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (NITPh) or (2) 2-phenyl-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazoline-1- oxyl (IMPh)). They crystallize in the monoclinic P2(1)/n space group with the following parameters: (1) a = 13.212(2) A, b = 9.136(1) A, c = 15.587(2) A, beta = 114.61(1) degrees, Z = 2; (2) a = 11.059(2) A, b = 15.289(1) A, c = 10.694(2) A, beta = 114.20(1) degrees, Z = 2. In both complexes the copper(II) ion is coordinated to two radicals in a slightly distorted square planar surrounding. The copper(II)-radical exchange couplings are antiferromagnetic for the nitronyl nitroxide (NITPh) complex (1) and ferromagnetic in the case of the imino nitroxide (IMPh) analogue (2). The ground state has been found to be a spin-doublet for 1 and the spin-quartet for 2. No thermal population of the highest states has been observed, indicating copper(II)-radical couplings of magnitude of J > 500 cm-1.

7.
Inorg Chem ; 39(16): 3526-36, 2000.
Article in English | MEDLINE | ID: mdl-11196811

ABSTRACT

The dinucleating ligand 2,6-bis[(bis(2-pyridylmethyl)amino)methyl]-4-methylphenol (H-BPMP) has been used to synthesize the three dinuclear Cu(II) complexes [Cu2(BPMP)(OH)][ClO4](2).0.5C4H8O (1), [Cu2(BPMP)(H2O)2](ClO4)(3).4H2O (2), and [Cu2(H-BPMP)][(ClO4)4].2CH3CN (3). X-ray diffraction studies reveal that 1 is a mu-hydroxo, mu-phenoxo complex, 2 a diaqua, mu-phenoxo complex, and 3 a binuclear complex with Cu-Cu distances of 2.96, 4.32, and 6.92 A, respectively. Magnetization measurements reveal that 1 is moderately antiferromagnetically coupled while 2 and 3 are essentially uncoupled. The electronic spectra in acetonitrile or in water solutions give results in accordance with the solid-state structures. 1 is EPR-silent, in agreement with the antiferromagnetic coupling between the two copper atoms. The X-band spectrum of powdered 2 is consistent with a tetragonally elongated square pyramid geometry around the Cu(II) ions, in accordance with the solid-state structure, while the spectrum in frozen solution suggests a change in the coordination geometry. The EPR spectra of 3 corroborate the solid-state and UV-visible studies. The 1H NMR spectra also lead to observations in accordance with the conclusions from other spectroscopies. The electrochemical behavior of 1 and 2 in acetonitrile or in water solutions shows that the first reduction (Cu(II)Cu(II)-Cu(II)Cu(I) redox couple) is reversible and the second (formation of Cu(I)Cu(I) irreversible. In water, 1 and 2 are reversibly interconverted upon acid/base titration (pK 4.95). In basic medium a new species, 4, is reversibly formed (pK 12.0), identified as the bishydroxo complex. Only 1 exhibits catecholase activity (oxidation of 3,5-di-tert-butylcatechol to the corresponding quinone, vmax = 1.1 x 10(-6) M-1 s-1 and KM = 1.49 mM). The results indicate that the pH dependence of the catalytic abilities of the complexes is related to changes in the coordination sphere of the metal centers.


Subject(s)
Catechols/metabolism , Copper/chemistry , Catalysis , Crystallography, X-Ray , Electrochemistry , Electron Spin Resonance Spectroscopy , Hydrogen-Ion Concentration , Magnetic Resonance Spectroscopy , Molecular Conformation , Spectrophotometry, Ultraviolet , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...