Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Phys Chem A ; 112(19): 4470-6, 2008 May 15.
Article in English | MEDLINE | ID: mdl-18426189

ABSTRACT

The potential energy surfaces of the first excited triplet state of some ruthenium polypyridyl complexes were investigated by means of density functional theory. Focus was placed on the interaction between the geometrical changes accompanying the photoactivity of these complexes when used as antenna complexes in artificial photosynthesis and dye-sensitized solar cells and the accompanying changes in electronic structure. The loss process (3)MLCT --> (3)MC can be understood by means of ligand-field splitting, traced down to the coordination of the central ruthenium atom.

2.
J Phys Chem A ; 112(6): 1330-8, 2008 Feb 14.
Article in English | MEDLINE | ID: mdl-18198849

ABSTRACT

A quantum chemical study has been undertaken to elucidate the cause of the recently observed S(H)2 reaction between the deuterated methyl radical (*CD3) and methylsilane (SiD3CH3) following the photolysis of CD3I. [Komaguchi, K.; Norberg, D.; Nakazawa, N.; Shiotani, M.; Persson, P.; Lunell, S. Chem. Phys. Lett. 2005, 410, 1-5.] It is found that the backside S(H)2 mechanism may proceed favorably for C-Si-C angles deviating with up to 40 degrees from linearity. The competitive hydrogen abstraction reaction is predicted to be active in the range of 90 degrees

3.
J Chem Phys ; 128(3): 034307, 2008 Jan 21.
Article in English | MEDLINE | ID: mdl-18205498

ABSTRACT

The UV photodissociation of bromo-3-fluorobenzene under collisionless conditions has been studied as a function of the excitation wavelength between 255 and 265 nm. The experiments were performed using ultrafast pump-probe laser spectroscopy. To aid in the interpretation of the results, it was necessary to extend the theoretical framework substantially compared to previous studies, to also include quantum dynamical simulations employing a two-dimensional nuclear Hamiltonian. The nonadiabatic potential energy surfaces (PES) were parameterized against high-level MS-CASTP2 quantum chemical calculations, using both the C-Br distance and the out-of-plane bending of the bromine as nuclear parameters. We show that the wavelength dependence of the photodissociation via the S0-->1pipi*-->1pisigma* channel, accessible with a approximately 260 nm pulse, is captured in this model. We thereby present the first correlation between experiments and theory within the quantitative regime.

4.
J Phys Chem A ; 111(2): 321-38, 2007 Jan 18.
Article in English | MEDLINE | ID: mdl-17214470

ABSTRACT

Anisotropic electron spin resonance (ESR) spectra are reported for the radical anions of hexafluorocyclopropane (c-C(3)F(6)(-)), octafluorocyclobutane (c-C(4)F(8)(-)), and decafluorocyclopentane (c-C(5)F(10)(-)) generated via gamma-irradiation in plastically crystalline tetramethylsilane (TMS) and rigid 2-methyltetrahydrofuran (MTHF) matrices. By combining the analysis of these experimental ESR spectra involving anisotropic hyperfine (hf) couplings with a series of quantum chemical computations, the geometrical and electronic structure of these unusual perfluorocycloalkane radical anions have been characterized more fully than in previous studies that considered only the isotropic couplings. Unrestricted Hartree-Fock (UHF) computations with the 6-311+G(d,p) basis set predict planar ring structures for all three radical anions, the ground electronic states being (2)A(2)(") for c-C(3)F(6)(-) (D(3h) symmetry), (2)A(2u) for c-C(4)F(8)(-) (D(4h)), and (2)A(2)(") for c-C(5)F(10)(-) (D(5h)), in which the respective six, eight, and ten 19F-atoms are equivalent by symmetry. A successful test of the theoretical computation is indicated by the fact that the isotropic 19F hf couplings computed by the B3LYP method with the 6-311+G(2df,p) basis set for the optimized geometries are in almost perfect agreement with the experimental values: viz., 19.8 mT (exp) vs 19.78 mT (calc) for c-C(3)F(6)(-); 14.85 mT (exp) vs 14.84 mT (calc) for c-C(4)F(8)(-); 11.6 mT (exp) vs 11.65 mT (calc) for c-C(5)F(10)(-). Consequently, the same computation method has been applied to calculate the almost axially symmetric anisotropic 19F hf couplings for the magnetically equivalent 19F atoms: (-4.90 mT, -4.84 mT, 9.75 mT) for c-C(3)F(6), (-3.54 mT, -3.48 mT, 7.02 mT) for c-C(4)F(8)(-), and (-2.62 mT, -2.56 mT, 5.18 mT) for c-C(5)F(10)(-). ESR spectral simulations performed using the computed principal values of the hf couplings and the spatial orientations of the 19F nuclei as input parameters reveal an excellent fit to the experimental anisotropic ESR spectra of c-C(3)F(6)(-), c-C(4)F(8)(-), and c-C(5)F(10)(-), thereby providing a convincing proof of the highly symmetric D(nh) structures that are predicted for these negative ions. Furthermore, using the computed 19F principal values and their orientations, the effective 19F anisotropic hf couplings along the molecular symmetry axes were evaluated for c-C(3)F(6)(-) and c-C(4)F(8)(-) and successfully correlated with the positions of the characteristic outermost features in both the experimental and calculated anisotropic spectra. In addition, the electronic excitation energies and oscillator strengths for the c-C(3)F(6)(-) , c-C(4)F(8)(-), and c-C(5)F(10)(-) radical anions were computed for the first time using time-dependent density functional theory (TD-DFT) methods.

5.
J Phys Chem B ; 110(41): 20513-25, 2006 Oct 19.
Article in English | MEDLINE | ID: mdl-17034238

ABSTRACT

Structural and electronic properties of TiO2 nanoparticles sensitized with a set of Ru(II)(tpy)2 based dyes have been investigated using density functional theory (DFT) calculations combined with time-dependent (TD) DFT calculations. The effects of carboxylic and phosphonic acid anchor groups, as well as a phenylene spacer group, on the optical properties of the dyes and the electronic interactions in the dye-sensitized TiO2 nanoparticles have been investigated. Inclusion of explicit counterions in the modeling shows that the description of the environment is important in order to obtain a realistic interfacial energy level alignment. A comparison of calculated electronic coupling strengths suggests that both the nature of the anchor group and the inclusion of the phenylene spacer group are capable of significantly influencing electron-transfer rates across the dye-metal oxide interface.

6.
J Phys Chem A ; 110(22): 7045-56, 2006 Jun 08.
Article in English | MEDLINE | ID: mdl-16737252

ABSTRACT

The photochemistry of low lying excited states of six different fluorinated bromobenzenes has been investigated by means of femtosecond laser spectroscopy and high level ab initio CASSCF/CASPT2 quantum chemical calculations. The objective of the work was to investigate how and to what extent light substituents, position on the benzene ring and number, would influence the dissociation mechanism of bromobenzene. In general, the actual position of a fluorine atom affects the dissociation rate to a less extent than the number of fluorine atoms. A clear connection between a lowering of a repulsive pisigma relative to a bound pipi state and the number of fluorine substituents exists, and the previously suggested model of coupling between dissociation rate and relative location of bound and repulsive state still holds for these molecules. A more elaborate examination of the electronic structure of the excited states in bromobenzenes than previously reported is presented.

7.
J Phys Chem A ; 110(19): 6307-23, 2006 May 18.
Article in English | MEDLINE | ID: mdl-16686467

ABSTRACT

Isotropic and anisotropic ESR spectra were observed for the radical anions of hexafluorocyclobutene (c-C(4)F(6)(-)), octafluorocyclopentene (c-C(5)F(8)(-)) and perfluoro-2-butene (CF(3)CF=CFCF(3)(-)) in gamma-irradiated plastically crystalline neopentane, tetramethylsilane (TMS) and TMS-d(12) matrices, or the rigid 2-methyltetrahydrofuran (MTHF) matrix. The isotropic spectra of c-C(4)F(6)(-) and c-C(5)F(8)(-) are characterized by three different sets of pairs of (19)F nuclei with the isotropic hyperfine (hf) splittings of 15.2 (2F), 6.5 (2F), 1.1 (2F) mT for c-C(4)F(6)(-) and 14.7 (2F), 7.4 (2F), 1.0 (2F) mT for c-C(5)F(8)(-). By comparison with the results of ab initio quantum chemical computations, the large triplet (19)F hf splittings of ca. 15 mT are assigned to the two fluorines attached to the C=C bond. The UHF, B3LYP and MP2 computations predict that the geometrical structures of the perfluoroalkenes are strongly distorted by one-electron reduction to form their radical anions; c-C(3)F(4)(-): C(2) symmetry ((2)A state) <-- C(2)(v) ((1)A(1)), c-C(4)F(6)(-): C(1) ((2)A) <-- C(2)(v) ((1)A(1)) and c-C(5)F(8)(-): C(1) ((2)A) <-- C(s) ((1)A'). The structural distortion arises from a mixing of the pi* and higher-lying sigma* orbitals at the C=C carbons similar to that previously found for CF(2)=CF(2)(-) with a C(2)(h) distortion. The isotropic (19)F hf splittings computed with the B3LYP method with 6-311+G(2df,p) basis set for the geometry optimized by the UHF and/or MP2 methods are within 6% error of the experimental values. The experimental anisotropic spectra of c-C(4)F(6)(-), c-C(5)F(8)(-) and CF(2)=CF(2)(-) were satisfactorily reproduced by the ESR spectral simulation method using the computed hf principal values and orientation of (19)F nuclei. In addition, the electronic excitation energies and oscillator strengths for the CF(2)=CF(2)(-), c-C(3)F(4)(-), c-C(4)F(6)(-) and c-C(5)F(8)(-) radical anions were computed for the first time by TD-DFT methods.

8.
Article in English | MEDLINE | ID: mdl-16344243

ABSTRACT

Highly resolved ESR spectra of monomer, dimer and trimer radical cations of coronene (C24H12) were observed at room temperature for a solution of 1,1,1,3,3,3-hexafluoro-2-propan-2-ol (HFP) containing thallium(III) trifluoroacetate as oxidant. The spectra consisting of multiple lines with isotropic 1H-hyperfine splitting (hfs) constants of 0.0766 mT (24H) and 0.013 mT (6H) were attributable to a mixture of the dimer with the trimer radical cations, (C24H12)2+ and (C24H12)3+. For (C24H12)2+, the 1H-hfs constant agreed well with the reported value, 0.077 mT. However, for (C24H12)3+, the values were significantly different from the reported ones, 0.117 mT (12H) and 0.020 mT (24H), by Ohya Nishiguchi et al. [H. Ohya-Nishiguchi, H. Ide, N. Hirota, Chem. Phys. Lett. 66 (1979) 581], but rather similar to those reported by Willigen et al. [H. van Willigen, E. De Boer, J.T. Cooper, W.F. Forbes, J. Chem . Phys. 49 (1968) 1190]. In conflict with Willigen's report, however, no ESR line broadening which has been ascribed to a low stationary concentration of (C24H12)3+ was detected. Based on ab initio MO calculations for benzene as a compact model of C24H12, the structure of (C24H12)3+ was investigated in terms of the observed 1H-hfs constants. A staggered sandwich C(2v) structure was suggested being at the "global" minimum for the benzene trimer cation. In the structure, the unpaired electron spin is predominantly localized to the central ring, which is qualitatively in agreement with the previous ESR results of (C24H12)3+ by Ohya-Nishiguchi et al. In addition, as a "local" minimum, the benzene trimer was indicated to have a slipped sandwich Cs structure, which is less stable by ca. 19 kJ mol(-1) than the "global" minimum. In this structure, the unpaired electron spin was nearly equally distributed on both the central and one of the two side C24H12 molecules. The observed 1H-hfs constants were possibly attributable to the (C24H12)3+ cation with the analogous slipped sandwich Cs structure.


Subject(s)
Electron Spin Resonance Spectroscopy , Polycyclic Compounds/chemistry , Cations/chemistry , Molecular Structure
9.
J Phys Chem B ; 109(16): 7948-51, 2005 Apr 28.
Article in English | MEDLINE | ID: mdl-16851928

ABSTRACT

Density functional theory was employed to investigate the adsorption site and hyperfine interactions of nitric oxide adsorbed in Na-LTA (previous name NaA) zeolite. Three different cluster models of increasing complexity were used to represent the zeolite network: (1) a six-membered ring terminated by hydrogen atoms with one sodium ion above the ring, (2) as model 1 with the addition of three sodium ions located at the centers of three imagined four-membered rings adjacent to the six-membered ring, and (3) as model 2 with the addition of the three four-membered rings adjacent to the six-membered ring. Calculations on the largest system (model 3) showed very good agreement with measured electronic Zeeman interaction couplings, 14N hyperfine coupling tensors, and 23Na hyperfine and nuclear quadruple coupling tensors of the S = 1/2 Na+...N-O adsorption complex when the position of the sodium ion was relaxed. The optimized geometry of the complex agreed nicely with that estimated experimentally, except for the Na-N distance, where the present results indicate that the distance deduced from previous ENDOR experiments may be underestimated by as much as 0.5 angstroms.


Subject(s)
Nitric Oxide/pharmacokinetics , Zeolites , Adsorption
10.
Phys Chem Chem Phys ; 7(23): 3938-42, 2005 Dec 07.
Article in English | MEDLINE | ID: mdl-19810322

ABSTRACT

Equilibrium geometries and vibrational frequencies of the ground and some excited states of p-chlorotoluene were calculated by the complete active space self-consistent field (CASSCF) method. Multi-reference CASSCF second order perturbation theory (MSCASPT2) calculations were performed on the vertical excitation energies of six singlet and triplet excited states. The potential energy curves along the Cl-C6H4CH3 bond distance of a number of low-lying singlet and triplet excited states were calculated by the CASPT2 method based on CASSCF partially optimized geometries. The fluorescence and one component of the dual phosphorescence observed experimentally were clearly explained by the CASPT2 calculated transition energies. According to those CASPT2 potential energy curves, the photodissociation of p-chlorotoluene at 266 nm was attributed to the predissociation of the first triplet excited state after its intersystem crossing with the first singlet excited state. The internal rotation and substitution effects of methyl on the photodissociation were discussed in detail.


Subject(s)
Toluene/analogs & derivatives , Chemistry, Physical/methods , Fluorescence , Light , Models, Chemical , Models, Theoretical , Molecular Structure , Phosphorus/chemistry , Photochemistry/methods , Software , Spectrometry, Fluorescence/methods , Toluene/chemistry
11.
J Chem Phys ; 120(14): 6502-9, 2004 Apr 08.
Article in English | MEDLINE | ID: mdl-15267540

ABSTRACT

Quantum chemical calculations have been performed on the ground state and several low-lying excited states of bromobenzene, ortho-, meta-, and para-dibromobenzene, and 1,3,5-tribromobenzene using high-level ab initio and hybrid density-functional methods. Experimental observations of ultrafast predissociation in these molecules are clarified from extensive theoretical information about all low-energy potential-energy curves together with symmetry arguments. The intriguing observation that o- and m-dibromobenzene have two ultrafast predissociation channels while bromobenzene, p-dibromobenzene, and 1,3,5-tribromobenzene only have one such channel is explained from the calculated potential-energy curves. These show that the lowering of point-group symmetry from C2v to Cs along the main photodissociation reaction coordinate, which only occurs in o- and m-dibromobenzene, opens up a new predissociation channel. Dynamical quantum simulations based on the calculated potential-energy curves are used to estimate the coupling strength at the intersystem crossing point in bromobenzene.

12.
Chemistry ; 10(3): 681-8, 2004 Feb 06.
Article in English | MEDLINE | ID: mdl-14767932

ABSTRACT

An alternative skeletal rearrangement of the quadricyclane radical cation (Q*+) explains the side products formed in the one-electron oxidation to norbornadiene. First, the bicyclo[2.2.1]hepta-2-ene-5-yl-7-ylium radical cation, with an activation energy of 14.9 kcal mol(-1), is formed. Second, this species can further rearrange to 1,3,5-cycloheptatriene through two plausible paths, that is, a multistep mechanism with two shallow intermediates and a stepwise path in which the bicyclo[3.2.0]hepta-2,6-diene radical cation is an intermediate. The multistep rearrangement has a rate-limiting step with an estimated activation energy of 16.5 kcal mol(-1), which is 2.8 kcal mol(-1) lower in energy than the stepwise mechanism. However, the lowest activation energy is found for the Q*+ cycloreversion to norbornadiene that has a transition structure, in close correspondence with earlier studies, and an activation energy of 10.1 kcal mol(-1), which agrees well with the experimental estimate of 9.3 kcal mol(-1). The computational estimates of activation energies were done using the CCSD(T)/6-311+G(d,p) method with geometries optimized on the B3LYP/6-311+G(d,p) level, combined with B3LYP/6-311+G(d,p) frequencies.

13.
J Chem Phys ; 121(22): 11000-6, 2004 Dec 08.
Article in English | MEDLINE | ID: mdl-15634049

ABSTRACT

Multireference complete active space self-consistent-field (CASSCF) and multireference CASSF second-order perturbation theory (MSCASPT2) calculations were performed on the ground state and a number of low-lying excited singlet and triplet states of chlorobenzene. The dual phosphorescence observed experimentally is clearly explained by the MSCASPT2 potential-energy curves. Experimental findings regarding the dissociation channels of chlorobenzene at 193, 248, and 266 nm are clarified from extensive theoretical information including all low-energy potential-energy curves.

14.
Org Lett ; 5(8): 1329-31, 2003 Apr 17.
Article in English | MEDLINE | ID: mdl-12688751

ABSTRACT

[structure: see text] A natural bond orbital analysis of the distonic bicyclo[2.2.1]hepta-2-ene-5-yl-7-ylium radical cation interprets its structure and radical character by a three-center two-electron bond between C2, C3, and C7 (a bishomoaromatic stabilization) and a singly occupied orbital on C5, n(5). Moreover, B3LYP/6-311+G(d,p) ESR parameters, which agree excellently with experiment, are interpreted in terms of spin polarization in the natural hybrids of sigma(C5-H5), and a dual hyperconjugative effect involving n(5), sigma(C1-H1a), sigma(C1-H1b), and antibonding counterparts.

SELECTION OF CITATIONS
SEARCH DETAIL
...