Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 122023 Nov 17.
Article in English | MEDLINE | ID: mdl-37975646

ABSTRACT

Cancer stem cells (CSCs) undergo epithelial-mesenchymal transition (EMT) to drive metastatic dissemination in experimental cancer models. However, tumour cells undergoing EMT have not been observed disseminating into the tissue surrounding human tumour specimens, leaving the relevance to human cancer uncertain. We have previously identified both EpCAM and CD24 as CSC markers that, alongside the mesenchymal marker Vimentin, identify EMT CSCs in human oral cancer cell lines. This afforded the opportunity to investigate whether the combination of these three markers can identify disseminating EMT CSCs in actual human tumours. Examining disseminating tumour cells in over 12,000 imaging fields from 74 human oral tumours, we see a significant enrichment of EpCAM, CD24 and Vimentin co-stained cells disseminating beyond the tumour body in metastatic specimens. Through training an artificial neural network, these predict metastasis with high accuracy (cross-validated accuracy of 87-89%). In this study, we have observed single disseminating EMT CSCs in human oral cancer specimens, and these are highly predictive of metastatic disease.


When oral cancers metastasise ­ that is, when tumour cells invade other parts of the body ­ they typically do so by first colonizing the lymph nodes present in the neck. As this event significantly reduces chances of survival, oral cancer patients often have their neck lymph nodes removed to prevent the spread of the disease. However, this surgery carries risks and leads to longer hospital stays, stressing the need for better ways to predict which oral tumours will metastasise. Evidence from lab-grown cells and mice studies suggest that, in oral cancer, metastasis occurs when some cells in the original tumour go through a process called the epithelial-mesenchymal transition (EMT for short). This transformation allows the cells to detach from the tumour and become invasive. However, it has so far been difficult to observe this process in actual human tumours; this is partly because cells undergoing EMT stop producing the proteins that scientists rely on to distinguish cancer and healthy cells. To address this knowledge gap, Youssef et al. focused on three proteins: two tumour markers, EpCAM and CD24; and Vimentin, which is produced in greater quantities in the invasive mesenchymal state. Previous work had shown that a specific population of oral tumour cells can continue to express all three proteins even when adopting a mesenchymal identity through EMT. Based on this knowledge, Youssef et al. hypothesised that tracking Vimentin, EpCAM and CD24 using fluorescence microscopy would allow them to identify metastasising cells in human samples. An analysis of over 12,000 images from 74 tumours obtained from surgeries revealed that, in the metastatic samples, the cells detaching from primary tumours were more likely to express these three proteins. Finally, Youssef et al. used these images to train a machine learning algorithm. When applied to data from new oral cancer patients, the programme was able to predict whether their tumours were likely to spread with 89% accuracy. If confirmed by further work, and in particular on larger samples, these findings could in the future help clinicians decide which patients with oral cancer would benefit the most from surgery to remove neck lymph nodes.


Subject(s)
Epithelial-Mesenchymal Transition , Mouth Neoplasms , Humans , Epithelial Cell Adhesion Molecule/metabolism , Vimentin/metabolism , Cell Line, Tumor , Neoplastic Stem Cells/metabolism
2.
Sci Adv ; 9(42): eadi0244, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37851808

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) has a very poor prognosis because of its high propensity to metastasize and its immunosuppressive microenvironment. Using a panel of pancreatic cancer cell lines, three-dimensional (3D) invasion systems, microarray gene signatures, microfluidic devices, mouse models, and intravital imaging, we demonstrate that ROCK-Myosin II activity in PDAC cells supports a transcriptional program conferring amoeboid invasive and immunosuppressive traits and in vivo metastatic abilities. Moreover, we find that immune checkpoint CD73 is highly expressed in amoeboid PDAC cells and drives their invasive, metastatic, and immunomodulatory traits. Mechanistically, CD73 activates RhoA-ROCK-Myosin II downstream of PI3K. Tissue microarrays of human PDAC biopsies combined with bioinformatic analysis reveal that rounded-amoeboid invasive cells with high CD73-ROCK-Myosin II activity and their immunosuppressive microenvironment confer poor prognosis to patients. We propose targeting amoeboid PDAC cells as a therapeutic strategy.


Subject(s)
Adenocarcinoma , Amoeba , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Humans , Mice , Adenocarcinoma/pathology , Amoeba/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Cell Line, Tumor , Cell Movement/physiology , Cytoskeletal Proteins , Immunosuppression Therapy , Myosin Type II/metabolism , Pancreatic Neoplasms/pathology , Tumor Microenvironment
3.
F1000Res ; 12: 439, 2023.
Article in English | MEDLINE | ID: mdl-38434654

ABSTRACT

Metastasis occurs when cancer cells leave the primary tumour and travel to a secondary site to form a new lesion. The tumour microenvironment (TME) is recognised to greatly influence this process, with for instance the vascular system enabling the dissemination of the cells into other tissues. However, understanding the exact role of these microenvironmental cells during metastasis has proven challenging. Indeed, in vitro models often appear too simplistic, and the study of the interactions between different cell types in a 3D space is limited. On the other hand, even though in vivo models incorporate the TME, observing cells in real-time to understand their exact role is difficult. Horizontal compartmentalised microfluidic models are a promising new platform for metastasis studies. These devices, composed of adjacent microchannels, can incorporate multiple cell types within a 3D space. Furthermore, the transparency and thickness of these models also enables high quality real-time imaging to be performed. This paper demonstrates how these devices can be successfully used for oral squamous cell carcinoma (OSCC) metastasis studies, focusing on the role of the vascular system in this process. Conditions for co-culture of OSCC cells and endothelial cells have been determined and staining protocols optimised. Furthermore, several imaging analysis techniques for these models are described, enabling precise segmentation of the different cell types on the images as well as accurate assessment of their phenotype. These methods can be applied to any study aiming to understand the role of microenvironmental cell types in cancer metastatic dissemination, and overcome several challenges encountered with current in vitro and in vivo models. Hence, this new in vitro model capable of recapitulating important aspects of the cellular complexity of human metastatic dissemination can ultimately contribute to replacing animal studies in this field.


Subject(s)
Carcinoma, Squamous Cell , Mouth Neoplasms , Animals , Humans , Endothelial Cells , Microfluidics , Coculture Techniques , Tumor Microenvironment
4.
Cancers (Basel) ; 13(12)2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34200761

ABSTRACT

Breast and prostate cancers preferentially metastasise to bone tissue, with metastatic lesions forming in the skeletons of most patients. On arriving in bone tissue, disseminated tumour cells enter a mechanical microenvironment that is substantially different to that of the primary tumour and is largely regulated by bone cells. Osteocytes, the most ubiquitous bone cell type, orchestrate healthy bone remodelling in response to physical exercise. However, the effects of mechanical loading of osteocytes on cancer cell behaviour is still poorly understood. The aim of this study was to characterise the effects of osteocyte mechanical stimulation on the behaviour of breast and prostate cancer cells. To replicate an osteocyte-controlled environment, this study treated breast (MDA-MB-231 and MCF-7) and prostate (PC-3 and LNCaP) cancer cell lines with conditioned media from MLO-Y4 osteocyte-like cells exposed to mechanical stimulation in the form of fluid shear stress. We found that osteocyte paracrine signalling acted to inhibit metastatic breast and prostate tumour growth, characterised by reduced proliferation and invasion and increased migration. In breast cancer cells, these effects were largely reversed by mechanical stimulation of osteocytes. In contrast, conditioned media from mechanically stimulated osteocytes had no effect on prostate cancer cells. To further investigate these interactions, we developed a microfluidic organ-chip model using the Emulate platform. This new organ-chip model enabled analysis of cancer cell migration, proliferation and invasion in the presence of mechanical stimulation of osteocytes by fluid shear stress, resulting in increased invasion of breast and prostate cancer cells. These findings demonstrate the importance of osteocytes and mechanical loading in regulating cancer cell behaviour and the need to incorporate these factors into predictive in vitro models of bone metastasis.

SELECTION OF CITATIONS
SEARCH DETAIL
...