Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
APL Bioeng ; 8(3): 036101, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38946776

ABSTRACT

Glioblastoma (GBM) is a highly invasive, aggressive brain cancer that carries a median survival of 15 months and is resistant to standard therapeutics. Recent studies have demonstrated that intratumoral heterogeneity plays a critical role in promoting resistance by mediating tumor adaptation through microenvironmental cues. GBM can be separated into two distinct regions-a core and a rim, which are thought to drive specific aspects of tumor evolution. These differences in tumor progression are regulated by the diverse biomolecular and biophysical signals in these regions, but the acellular biophysical characteristics remain poorly described. This study investigates the mechanical and ultrastructural characteristics of the tumor extracellular matrix (ECM) in patient-matched GBM core and rim tissues. Seven patient-matched tumor core and rim samples and one non-neoplastic control were analyzed using atomic force microscopy, scanning electron microscopy, and immunofluorescence imaging to quantify mechanical, ultrastructural, and ECM composition changes. The results reveal significant differences in biophysical parameters between GBM core, rim, and non-neoplastic tissues. The GBM core is stiffer, denser, and is rich in ECM proteins hyaluronic acid and tenascin-C when compared to tumor rim and non-neoplastic tissues. These alterations are intimately related and have prognostic effect with stiff, dense tissue correlating with longer progression-free survival. These findings reveal new insights into the spatial heterogeneity of biophysical parameters in the GBM tumor microenvironment and identify a set of characteristics that may correlate with patient prognosis. In the long term, these characteristics may aid in the development of strategies to combat therapeutic resistance.

2.
Sci Adv ; 9(28): eabn5709, 2023 07 14.
Article in English | MEDLINE | ID: mdl-37436986

ABSTRACT

Oogenesis involves transduction of mechanical forces from the cytoskeleton to the nuclear envelope (NE). In Caenorhabditis elegans, oocyte nuclei lacking the single lamin protein LMN-1 are vulnerable to collapse under forces mediated through LINC (linker of nucleoskeleton and cytoskeleton) complexes. Here, we use cytological analysis and in vivo imaging to investigate the balance of forces that drive this collapse and protect oocyte nuclei. We also use a mechano-node-pore sensing device to directly measure the effect of genetic mutations on oocyte nuclear stiffness. We find that nuclear collapse is not a consequence of apoptosis. It is promoted by dynein, which induces polarization of a LINC complex composed of Sad1 and UNC-84 homology 1 (SUN-1) and ZYGote defective 12 (ZYG-12). Lamins contribute to oocyte nuclear stiffness and cooperate with other inner nuclear membrane proteins to distribute LINC complexes and protect nuclei from collapse. We speculate that a similar network may protect oocyte integrity during extended oocyte arrest in mammals.


Subject(s)
Caenorhabditis elegans Proteins , Nuclear Envelope , Animals , Caenorhabditis elegans/genetics , Oogenesis/genetics , Oocytes , Cell Nucleus , Mammals , Laminin , Caenorhabditis elegans Proteins/genetics
3.
J Hematol Oncol ; 11(1): 74, 2018 05 31.
Article in English | MEDLINE | ID: mdl-29855336

ABSTRACT

BACKGROUND: Epithelial-to-mesenchymal transition (EMT) has, in recent years, emerged as an important tumor cell behavior associated with high metastatic potential and drug resistance. Interestingly, protein SUMOylation and hepatocyte growth factor could respectively reduce the effect of small molecule inhibitors on tyrosine kinase activity of mutated epidermal growth factor receptor of lung adenocarcinomas (LADC). The actual mechanism is yet to be resolved. METHODS: Immunohistochemistry was used to stain proteins in LADC specimens. Protein expression was confirmed by Western blotting. In vitro, expression of proteins was determined by Western blotting and immunocytochemistry. Levels of circular RNA were determined by reverse transcription-polymerase chain reaction. RESULTS: SAE2 and cirRNA CCDC66 were highly expressed in LADC. Expression of SAE2 was mainly regulated by EGFR; however, expression of cirRNA CCDC66 was positively regulated by FAK and c-Met but negatively modulated by nAchR7α. EGFR-resistant H1975 also highly expressed cirRNA CCDC66. Immediate response of hypoxia increased phosphorylated c-Met, SAE2, and epithelial-to-mesenchymal transition. Either activation of FAK or silencing of nAchR7α increased cirRNA CCDC66. CONCLUSIONS: HGF/c-Met regulates expression of SAE2 and cirRNA CCDC66 to increase EMT and drug resistance of LADC cells. Multimodality drugs concurrently aiming at these targets would probably provide more benefits for cancer patients.


Subject(s)
Eye Proteins/genetics , Hepatocyte Growth Factor/metabolism , Lung Neoplasms/pathology , Proto-Oncogene Proteins c-met/metabolism , Adenocarcinoma/pathology , Cell Line , Cell-Free Nucleic Acids/analysis , Drug Resistance/drug effects , Epithelial-Mesenchymal Transition/drug effects , ErbB Receptors/pharmacology , Gene Expression/drug effects , Humans , Metabolic Networks and Pathways , Ubiquitin-Activating Enzymes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...