Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38612157

ABSTRACT

Many countries banned asbestos due to its toxicity, but considering its colossal use, especially in the 1960s and 1970s, disposing of waste containing asbestos is the current problem. Today, many asbestos disposal technologies are known, but they usually involve colossal investment and operating expenses, and the end- and by-products of these methods negatively impact the environment. This paper identifies a unique modern direction in detoxifying asbestos minerals, which involves using microorganisms and plants and their metabolites. The work comprehensively focuses on the interactions between asbestos and plants, bacteria and fungi, including lichens and, for the first time, yeast. Biological treatment is a prospect for in situ land reclamation and under industrial conditions, which can be a viable alternative to landfilling and an environmentally friendly substitute or supplement to thermal, mechanical, and chemical methods, often characterized by high cost intensity. Plant and microbial metabolism products are part of the green chemistry trend, a central strategic pillar of global industrial and environmental development.

2.
Materials (Basel) ; 17(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38673097

ABSTRACT

This research aimed to optimize the production conditions for geopolymer matrices by investigating the combination of heat curing conditions and the incorporation of recycled ceramic fines (CFs) as a partial replacement material for fly ash (FA). The obtained physical and mechanical properties of the composites confirmed the positive impact resulting from increasing the curing temperature from 65 °C to 85 °C and using CFs in the amount of 37.5% as a replacement for FA. The results were from laboratory tests performed to evaluate compressive strength, bending strength, bulk density, and water absorption of the geopolymer mixes. In addition, microscopic observations and porosity assessment were also performed, which confirmed that a further increase in the replacement of FA by CFs causes an increase in the porosity of the mixes and, thus, a decrease in all the assessed properties that are relevant to their practical use.

3.
Chemosphere ; 333: 138890, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37182706

ABSTRACT

A simple way to reduce pesticides in cereal grains is to use washing methods. The challenge of this study was to evaluate the effectiveness of reduction of 3 triazole fungicides (difenoconazole, tebuconazole, tetraconazole) and 3 pyrethroid insecticides (beta-cyfluthrin, cypermethrin, deltamethrin) commonly used in wheat protection. Four different pre-washing methods (hot and cold water washing, twice water, and ultrasound-supported washing) were evaluated. The processing factor (PF) was calculated based on the concentration of pesticides determined by LC-MS/MS in the samples of cereal grains before and after the washing process. PFs were within the range 0.01-0.97. Time, teperature and ultrasound were factors influencing the efficiency of water treatment. The study showed that ultrasound-supported washing eliminated pesticide residues to a greater extent than ordinary washing. This process significantly affected or completely reduced concentrations of triazoles in wheat grains. The highest reduction of residues (99%) was received for tebuconazole and ultrasound washing with heating temperature of 60 °C for a total of 10 min. In all washing processes, pyrethroids were removed with lower efficiency than triazoles. The lowest residue reduction was obtained for cypermethrin and washing under cold water for 5 min (3%; PF = 0.97). Beta-Cyfluthrin showed only a 6-27% reduction regardless of the process (PF: 0.73-0.95). Using static analysis, the relationship between the properties of pesticides and the reduction of their concentration in cereals was clarified and showed a strong correlation.


Subject(s)
Pesticide Residues , Pesticides , Pyrethrins , Water Purification , Pesticides/analysis , Edible Grain/chemistry , Triticum , Chromatography, Liquid , Food Handling/methods , Tandem Mass Spectrometry , Pyrethrins/analysis , Pesticide Residues/analysis , Triazoles/analysis , Food Contamination/analysis
4.
Chemosphere ; 313: 137498, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36495984

ABSTRACT

Apples play an important role in everyone's diet and may contain pesticide residues that can pose a significant health problem for consumers. Various technological processes are promising methods for minimizing pesticide concentrations in fruit. Therefore, the subject of this comprehensive study was to investigate the effects of high-temperature (baking) and low-temperature (freeze-drying) processes on the change in the levels of nine fungicides in apples with skin and peeled. The investigated compounds belong to the chemical groups of benzimidazole (thiophanate methyl and carbendazim), phtalimide (captan and their metabolite tetrahydrophtalimid (THPI)), strobilurin (pyraclostrobin, trifloxystrobin) and triazole (difenoconazole, tebuconazole, tetraconazole). Processing factors (PF) were calculated for each pesticide-process-product combination. The results show that baking and freeze-drying generally reduced pesticide concentrations, with PFs ranging from 0.31 to 0.81 and 0.26 to 0.68, respectively. Apart from freeze-drying for carbendazim and baking for captan, PFs were above 1. Only for thiophanate-methyl, a complete reduction was observed, which resulted from complete degradation to carbendazim. The study also aimed to assess human risk according to the new strategy for different sub-populations with conversion using the 36 PFs obtained. The highest acute exposure (expressed as %ARfD) was obtained for tebuconazole in raw apples (initial concentration of 1.42 mg/kg; 400% ARfD) for Dutch toddlers. After food processing, this decreased to 284% (0.74 mg/kg, baking) and to 137% (0.37 mg/kg, freeze-drying), but was still above the safety limit. Similarly, for adults and the general French population for tebuconazole, the %ARfD was high as it reached the values of 104% (initial concentration of 0.89 mg/kg) in unprocessed apples, 73.9% after baking (0.73 mg/kg) and 35.6% after freeze-drying (0.35 mg/kg). The results indicate that food processing techniques can potentially be used to minimize the hazardous effects of pesticide residues on human health.


Subject(s)
Malus , Pesticide Residues , Pesticides , Adult , Humans , Pesticides/analysis , Malus/chemistry , Pesticide Residues/analysis , Captan/analysis , Temperature , Fruit/chemistry , Eating , Risk Assessment , Food Contamination/prevention & control , Food Contamination/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...