Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 122(25): 6595-6603, 2018 06 28.
Article in English | MEDLINE | ID: mdl-29856636

ABSTRACT

Because of the complexity of petroleum-based fuels, researchers typically use simplified mixtures, known as surrogates, to study combustion behavior and to attempt to identify how physical properties are related to combustion. The process of determining the surrogate composition to yield a desired set of thermophysical properties can be a complicated and time-consuming task. As a result, the use of computer simulations to narrow the number of possible surrogate compositions is beginning to be explored. Herein, molecular dynamics (MD) simulations are used to model binary mixtures of n-hexadecane with either benzene, toluene, n-ethylbenzene, n-propylbenzene, or n-butylbenzene. Calculated densities are in quantitative agreement with experimental values. With the exception of the mixtures containing benzene, simulated excess molar volumes are also in very good agreement with measured values. Isentropic bulk moduli are in qualitative agreement with experiment, and reproduce interesting trends observed in the experimental data. Specifically, minima in the bulk moduli at intermediate compositions of several of the alkylbenzenes are correctly reproduced. In addition, the structures of the fluids are also examined. For mixtures of n-hexadecane with alkylbenzenes with longer chains, the orientation of the aromatic rings is not substantially impacted by composition. In contrast, increasing n-hexadecane content increases the ratio of parallel to perpendicular arrangements of benzene and toluene molecules. In those mixtures, this change in orientation of the aromatic rings could be responsible for the minima observed in the bulk moduli data. These results show that MD simulations can assist in development of fuel surrogates, both by predicting thermophysical properties and by providing insight into how molecular structure and composition affect those properties.

2.
Mar Pollut Bull ; 114(2): 977-986, 2017 Jan 30.
Article in English | MEDLINE | ID: mdl-27871626

ABSTRACT

The influence of salinity, pH, temperature, and dissolved organic matter on the photolysis rate of 2,4,6-trinitrotoluene (TNT) in marine, estuary, and laboratory-prepared waters was studied using a Suntest CPS+® solar simulator equipped with optical filters. TNT degradation rates were determined using HPLC analysis, and products were identified using LC/MS. Minimal or no TNT photolysis occurred under a 395-nm long pass filter, but under a 295-nm filter, first-order TNT degradation rate constants and apparent quantum yields increased with increasing salinity in both natural and artificial seawater. TNT rate constants increased slightly with increasing temperature (10 to 32°C) but did not change significantly with pH (6.4 to 8.1). The addition of dissolved organic matter (up to 5mg/L) to ultrapure water, artificial seawater, and natural seawater increased the TNT photolysis rate constant. Products formed by TNT photolysis in natural seawater were determined to be 2,4,6-trinitrobenzaldehyde, 1,3,5-trinitrobenzene, 2,4,6-trinitrobenzoic acid, and 2-amino-4,6-dinitrobenzoic acid.


Subject(s)
Estuaries , Photolysis , Seawater/chemistry , Trinitrotoluene/chemistry , Water Pollutants, Chemical/chemistry , Humic Substances , Hydrogen-Ion Concentration , Nitrobenzoates , Salinity , Sunlight , Temperature , Trinitrobenzenes , Trinitrotoluene/analysis , Water , Water Pollutants, Chemical/analysis , ortho-Aminobenzoates
SELECTION OF CITATIONS
SEARCH DETAIL
...