Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 59(5): 2005-24, 2016 Mar 10.
Article in English | MEDLINE | ID: mdl-26756222

ABSTRACT

First generation EGFR TKIs (gefitinib, erlotinib) provide significant clinical benefit for NSCLC cancer patients with oncogenic EGFR mutations. Ultimately, these patients' disease progresses, often driven by a second-site mutation in the EGFR kinase domain (T790M). Another liability of the first generation drugs is severe adverse events driven by inhibition of WT EGFR. As such, our goal was to develop a highly potent irreversible inhibitor with the largest selectivity ratio between the drug-resistant double mutants (L858R/T790M, Del/T790M) and WT EGFR. A unique approach to develop covalent inhibitors, optimization of reversible binding affinity, served as a cornerstone of this effort. PF-06459988 was discovered as a novel, third generation irreversible inhibitor, which demonstrates (i) high potency and specificity to the T790M-containing double mutant EGFRs, (ii) minimal intrinsic chemical reactivity of the electrophilic warhead, (iii) greatly reduced proteome reactivity relative to earlier irreversible EGFR inhibitors, and (iv) minimal activity against WT EGFR.


Subject(s)
Drug Discovery , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Mutant Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Pyrroles/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Dose-Response Relationship, Drug , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Models, Molecular , Molecular Structure , Mutation , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Pyrroles/chemical synthesis , Pyrroles/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
2.
Bioorg Med Chem Lett ; 14(3): 809-12, 2004 Feb 09.
Article in English | MEDLINE | ID: mdl-14741295

ABSTRACT

A series of sulfonamides (1) has been prepared as inhibitors of interleukin-1beta converting enzyme (ICE), also known as caspase 1. These compounds were designed to improve potency by rigidifying the enzyme bound molecule through an intramolecular hydrogen bond. An X-ray crystal structure of a representative member of this series bound to the active site of ICE, confirms the presence of the hydrogen bonding interaction.


Subject(s)
Caspase Inhibitors , Drug Design , Serpins/chemical synthesis , Serpins/pharmacology , Sulfonamides/chemical synthesis , Sulfonamides/pharmacology , Viral Proteins , Binding Sites , Caspase 1/metabolism , Crystallography, X-Ray , Humans , Hydrogen Bonding , Models, Molecular , Molecular Conformation , Molecular Structure , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...