Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Chem ; 8: 593932, 2020.
Article in English | MEDLINE | ID: mdl-33240854

ABSTRACT

Nitrogen-free amorphous carbon thin films prepared via sputtering followed by graphitization, were used as precursor materials for the creation of N-doped carbon electrodes with varying degrees of amorphization. Incorporation of N-sites was achieved via nitrogen plasma treatments which resulted in both surface functionalization and amorphization of the carbon electrode materials. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy were used to monitor composition and carbon organization: results indicate incorporation of predominantly pyrrolic-N sites after relatively short treatment cycles (5 min or less), accompanied by an initial etching of amorphous regions followed by a slower process of amorphization of graphitized clusters. By leveraging the difference in the rate of these two processes it was possible to investigate the effects of chemical N-sites and C-defect sites on their electrochemical response. The materials were tested as metal-free electrocatalysts in the oxygen reduction reaction (ORR) in alkaline conditions. We find that the introduction of predominantly pyrrolic-N sites via plasma modification results in improvements in selectivity in the ORR, relative to the nitrogen-free precursor material. Introduction of defects through prolonged plasma exposure has a more pronounced and beneficial effect on ORR descriptors than introduction of N-sites alone, leading to both increased onset potentials, and reduced hydroperoxide yields relative to the nitrogen-free carbon material. Our results suggest that increased structural disorder/heterogeneity results in the introduction of carbon sites that might either serve as main activity sites, or that enhance the effects of N-functionalities in the ORR via synergistic effects.

2.
Nanomaterials (Basel) ; 10(11)2020 Oct 25.
Article in English | MEDLINE | ID: mdl-33113798

ABSTRACT

Nanoparticle gold films were deposited using femtosecond laser ablation in argon at atmospheric pressure in an arrangement where a flat Au target was irradiated through a transparent substrate in close proximity. Spatially extended films were made by rastering the target and substrate assembly together in the laser beam. Fast imaging clearly showed pronounced narrowing of the ablation plume, which can be understood in terms of laser induced multiphoton ionisation and heating of the gas near the ablation site. Deposition was possible for target-substrate separation up to 2 mm. The equivalent thickness of the nanoparticle film was controlled in the range 0.4-28 nm by changing the target-substrate separation and the shot-to-shot spacing of ablation spot raster. The mean Feret diameter varied in the range 14-40 nm depending on the deposition conditions, and all the films showed a surface plasmon resonance at about 525 nm, which was nearly independent of the equivalent thickness. The technique can readily be applied to other materials for the fabrication of nanoparticulate films at atmospheric pressure.

SELECTION OF CITATIONS
SEARCH DETAIL
...