Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 61(38): e202209087, 2022 09 19.
Article in English | MEDLINE | ID: mdl-35876722

ABSTRACT

The Heck reaction between N-heteroaryl halides and heterocyclic alkenes provides a convenient approach to biologically relevant α-heteroaryl functionalized heterocycles, yet reactions of this type have been challenging due to strong N-heteroaryl coordination to palladium metal, which causes catalyst poisoning. In this report, an efficient palladium-catalyzed Heck reaction between N-heteroaryl halides and heterocyclic olefins is established, leading to a variety of α-heteroaryl substituted heterocycles. The method features an unprecedented broad substrate scope and excellent functional group compatibility. The employment of a sterically bulky P, P=O ligand containing an anthryl moiety is crucial for this transformation due to the coordinative unsaturation facilitated by its steric bulkiness. The asymmetric variant of the Heck reaction is achieved with (S)-DTBM-SEGPHOS via a cationic palladium pathway, which has enabled an efficient asymmetric synthesis of (S)-nicotine and its analogues.


Subject(s)
Alkenes , Palladium , Catalysis
2.
Org Lett ; 23(16): 6439-6443, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34369790

ABSTRACT

A practical and efficient synthesis of α-heteroaryl propionic esters is developed by employing palladium-catalyzed α-heteroarylation of silyl ketene acetals, forming a wide variety of α-heteroaryl propionic esters with various substituents and functionalities in high yields. The success of this transformation is credited to the development of the bulky P,P═O ligand. The method has provided an efficient synthesis of α-heteroaryl propionic acids.

3.
Sci Total Environ ; 750: 141667, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32871370

ABSTRACT

Stable isotopes are increasingly used to detect and understand the impacts of environmental changes on riverine ecological properties. The δ13C and δ15N signatures of fish with different feeding habits were measured in a large subtropical river to evaluate how fish isotopic niches respond to environmental gradients and human disturbance. From basal resources to fish consumers, the high values of epilithic periphyton (biofilm) δ13C and suspended particulate organic matter δ15N concurrently determined the niche ranges and space (e.g., convex hull area) of fish communities. Along a longitudinal gradient (except in the industrial zone), the number of fish trophic guilds identified by Bayesian ellipses continuously increased; meanwhile, higher trophic diversity and less redundancy were observed near the lower reaches and estuary. Variance inflation factors were estimated to detect the multicollinearity of 40 environmental variables, 14 of which were selected as indicators. Relative importance (RI) analysis was used to evaluate the explanatory power of these indicators for the spatial variation in isotopic niche metrics; the results showed that riffle habitat area, water nitrate concentration, gravel-cobble substrate, and riparian buffer width were the 4 key environmental indicators (average RI > 12%) that determined the longitudinal pattern of fish isotopic niches. These findings suggested that community-level δ13C signatures are more responsive to changes in habitats (e.g., riffle) and substrates (e.g., gravel-cobble) supporting the productivity of autochthonous diatoms while δ15N signatures respond to water quality altered by nitrogen pollution from manure-fertilized farming and poultry livestock effluent. Furthermore, δ15N may be more robust and interpretable than δ13C as an isotopic indicator of ecosystem change in rivers exposed to multiple or complex anthropogenic stressors.


Subject(s)
Ecosystem , Rivers , Animals , Bayes Theorem , Carbon Isotopes/analysis , China , Environmental Indicators , Environmental Monitoring , Humans , Nitrogen Isotopes/analysis
4.
Environ Sci Pollut Res Int ; 27(29): 36132-36146, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32557028

ABSTRACT

Isotopic niches reflect the basic structure and functioning of river food webs; however, their response to riverine environments remains unclear. We used stable isotope analysis and community-wide metrics to quantify how invertebrate niches vary with environmental changes along a large subtropical river in China. Eight niche metrics, which had higher values in the wet than in the dry season, increased from headwaters to the middle river and decreased sharply near the estuarine industrial zones. The δ13C value of > - 23.8‰, which indicated consumption of epilithic diatoms, separated the invertebrates between the upper and mid-lower reaches. The δ15N values > 9.4‰ identified site-specific nitrogen sources from manure (e.g., animal effluent) and domestic sewage in agricultural area. The output of mixing models showed a downstream shift in carbon utilization by invertebrates from autochthonous periphyton and submerged hydrophytes to allochthonous C3 plants. Principle component (PC) and cluster analysis decomposed and grouped 40 environmental variables into 4 PCs that explained 84.5% of the total variance. Hierarchical partitioning revealed that the second and first PCs, which were driven mainly by biological indicators and habitat characteristics, had the highest explanatory power for niche ranges and areas (e.g., Bayesian ellipse), respectively. Our results suggest that reducing anthropogenic pressures (e.g., habitat loss and water pollution) on river ecosystems through measures, such as protecting diatom-dominated biofilms in riffles and controlling nitrogen loading in rural regions, may produce the greatest impact for river management. Graphical abstract.


Subject(s)
Ecosystem , Water Pollutants, Chemical/analysis , Animals , Bayes Theorem , China , Environmental Monitoring , Invertebrates , Nitrogen Isotopes/analysis
5.
Water Res ; 170: 115302, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31751894

ABSTRACT

Biological pump is important to control the fate and distribution of organic contaminants, particularly in temperate and cold oligotrophic waters. However, it remains largely unknown how factors affect the long-term occurrence and fate of ionogenic organic compounds in subtropical eutrophic waters. The present study aimed to assess biogeochemical and physical factors affecting the annual occurrence, bioaccumulation, and trophic transfer of 14 antibiotics through planktonic food webs in the Pearl River, a large subtropical eutrophic river in China. This was done by carrying out 1-year simultaneous field observations of antibiotic concentrations in five water column compartments and assessing the variability of bioconcentration (BCF), bioaccumulation (BAF), and biomagnification (BMF) factors, which were influenced by plankton biomass, pH and temperature of water columns. The annual mean antibiotic concentration per site ranged from 1014.66 ±â€¯535.66 ng L-1 to 1464.63 ±â€¯1075.91 ng L-1, and was positively correlated with phytoplankton biomass, but independent of the proximity of the sites to urban areas. Antibiotic occurrences in both phytoplankton and zooplankton were greatly influenced by a biodilution effect. The annual occurrence of antibiotics in the water column was modulated by biological pumps as well as their equilibrium partitioning, and indirectly influenced of eutrophication with pH increased with phytoplankton biomass and phytoplankton life cycling. BAF of antibiotics by plankton had biphasic correlations with temperature (n = 150, R2 = 0.17-0.60, p < 0.001) and decreased with plankton biomass (n = 105-147, R2 = 0.10-0.22, p < 0.001). The trophic transfer of antibiotics from phytoplankton to zooplankton (BMFs) were positively correlated with both phytoplankton biomass (n = 30, R2 = 0.58, p < 0.001) and temperature (n = 132-150, R2 = 0.12-0.43, p < 0.001). Mean BMFs of ciprofloxacin, lomefloxacin, ofloxacin, oxytetracycline, and tetracycline ranged between 0.18 and 2.25, implying these chemicals can undergo biomagnification along planktonic food webs. The present research demonstrates the important role of biogeochemical and physical factors in the environmental fate of antibiotics at large spatiotemporal scales.


Subject(s)
Food Chain , Water Pollutants, Chemical , Animals , Anti-Bacterial Agents , Bioaccumulation , China , Environmental Monitoring , Lakes , Phytoplankton , Plankton , Rivers , Zooplankton
SELECTION OF CITATIONS
SEARCH DETAIL
...