Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 12(2)2020 Feb 14.
Article in English | MEDLINE | ID: mdl-32075032

ABSTRACT

Herein, we report a flexible high-conductivity transparent electrode (denoted as S-PH1000), based on conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), and itsapplication to flexible semi-transparentsupercapacitors. A high conductivity of 2673 S/cm was achieved for the S-PH1000 electrode on flexible plastic substrates via a H2SO4 treatment with an optimized concentration of 80 wt.%. This is among the top electrical conductivities of PEDOT:PSS films processed on flexible substrates. As for the electrochemical properties,a high specific capacitance of 161F/g was obtained from the S-PH1000 electrode at a current density of 1 A/g. Excitingly, a specific capacitance of 121 F/g was retained even when the current density increased to 100 A/g, which demonstrates the high-rate property of this electrode. Flexible semi-transparent supercapacitors based on these electrodes demonstrate high transparency, over 60%, at 550 nm. A high power density value, over 19,200 W/kg,and energy density, over 3.40 Wh/kg, was achieved. The semi-transparent flexible supercapacitor was successfully applied topower a light-emitting diode.

2.
ACS Appl Mater Interfaces ; 10(31): 26687-26693, 2018 Aug 08.
Article in English | MEDLINE | ID: mdl-30009591

ABSTRACT

Light-weight, mechanically flexible, transparent thermoelectric modules are promising as portable and easy-to-integrate energy sources. Here, we demonstrate flexible, transparent thermoelectric modules by using a conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as the p-type leg and indium tin oxide (ITO)-PEDOT:PSS as the n-type leg. Main observations include the following: (1) the bilayer combination of ITO-PEDOT:PSS (PEDOT:PSS coated on top of the ITO) displays a negative Seebeck coefficient ( S) and the value is similar to that of the ITO single layer; (2) the S value of the ITO-PEDOT:PSS is almost not dependent on the area ratio of the stacked PEDOT:PSS and ITO; and (3) the conducting polymer PEDOT:PSS deposition on top of ITO helps the ITO not to generate cracks during bending, which enhances the mechanical flexibility of the ITO. On the basis of these observations, thermoelectric modules with eight pairs of junctions are fabricated and the thermoelectric modules' Δ V/Δ T (modules' generated thermovoltage per temperature difference) is nearly the addition of S values of all legs. Thermoelectric modules show good mechanical flexibility and air stability. Applications of thermoelectric modules have also been demonstrated to produce thermovoltage via the temperature difference produced by a human hand or warm water.

3.
J Am Chem Soc ; 140(3): 1019-1027, 2018 01 24.
Article in English | MEDLINE | ID: mdl-29275630

ABSTRACT

The environmental toxicity of Pb in organic-inorganic hybrid perovskite solar cells remains an issue, which has triggered intense research on seeking alternative Pb-free perovskites for solar applications. Halide perovskites based on group-VA cations of Bi3+ and Sb3+ with the same lone-pair ns2 state as Pb2+ are promising candidates. Herein, through a joint experimental and theoretical study, we demonstrate that Cl-incorporated methylammonium Sb halide perovskites (CH3NH3)3Sb2ClXI9-X show promise as efficient solar absorbers for Pb-free perovskite solar cells. Inclusion of methylammonium chloride into the precursor solutions suppresses the formation of the undesired zero-dimensional dimer phase and leads to the successful synthesis of high-quality perovskite films composed of the two-dimensional layered phase favored for photovoltaics. Solar cells based on the as-obtained (CH3NH3)3Sb2ClXI9-X films reach a record-high power conversion efficiency over 2%. This finding offers a new perspective for the development of nontoxic and low-cost Sb-based perovskite solar cells.

4.
ACS Appl Mater Interfaces ; 9(31): 26045-26051, 2017 Aug 09.
Article in English | MEDLINE | ID: mdl-28714304

ABSTRACT

Hydroxyl groups on the surface of ZnO films lead to the chemical decomposition of CH3NH3PbI3 perovskite films during thermal annealing, which limits the application of ZnO as a facile electron-transporting layer (ETL) in perovskite solar cells. In this work, we report a new recipe that leads to substantially reduced hydroxyl groups on the surface of the resulting ZnO films by employing polyethylenimine (PEI) to replace generally used ethanolamine in the precursor solutions. Films derived from the PEI-containing precursors are denoted as P-ZnO and those from the ethanolamine-containing precursors as E-ZnO. Besides the fewer hydroxyl groups that alleviate the thermochemical decomposition of CH3NH3PbI3 perovskite films, P-ZnO also provides a template for the fixation of fullerene ([6,6]-phenyl-C61-butyric acid methyl ester, PCBM) owing to its nitrogen-rich surface that can interact with PCBM. The fullerene was used to block the direct contact between P-ZnO and CH3NH3PbI3 films and therefore further enhance the thermochemical stability of perovskite films. As a result, perovskite solar cells based on the P-ZnO/PCBM ETL yield an optimal power conversion efficiency (PCE) of 15.38%. We also adopt P-ZnO as the ETL for organic solar cells that yield a remarkable PCE of 10.5% based on the PBDB-T:ITIC photoactive layer.

5.
ACS Appl Mater Interfaces ; 9(28): 24027-24034, 2017 Jul 19.
Article in English | MEDLINE | ID: mdl-28660760

ABSTRACT

Both single-junction and tandem organic photovoltaic cells have been well developed. A tandem cell contains two junctions with a charge recombination layer (CRL) inserted between the two junctions. So far, there is no detailed report on how the device will perform that contains two junctions but without a CRL in between. In this work, we report the photocurrent spectra and photovoltage output of the devices that contains two bulk-heterojunctions (BHJ) stacked directly on top of each other without a CRL. The top active layer is prepared by transfer printing. The photocurrent response spectra and photovoltage are found to be sensitive to stacking sequence and the selection of electron acceptors. The open-circuit voltage of the devices (up to 1.09 V) can be higher than the devices containing either junction layer. The new phenomenon in the new device architecture increases the versatility of the optoelectronic devices based on organic semiconductors.

6.
ACS Appl Mater Interfaces ; 9(10): 9176-9183, 2017 Mar 15.
Article in English | MEDLINE | ID: mdl-28222591

ABSTRACT

Low noise current is critical for achieving high-detectivity organic photodetectors. Inserting charge-blocking layers is an effective approach to suppress the reverse-biased dark current. However, in solution-processed organic photodetectors, the charge-transport material needs to be dissolved in solvents that do not dissolve the underneath light-absorbing layer, which is not always possible for all kinds of light-absorbing materials developed. Here, we introduce a universal strategy of transfer-printing a conjugated polymer, poly(3-hexylthiophene) (P3HT), as the electron-blocking layer to realize highly sensitive photodetectors. The transfer-printed P3HT layers substantially and universally reduced the reverse-biased dark current by about 3 orders of magnitude for various photodetectors with different active layers. These photodetectors can detect the light signal as weak as several picowatts per square centimeter, and the device detectivity is over 1012 Jones. The results suggest that the strategy of transfer-printing P3HT films as the electron-blocking layer is universal and effective for the fabrication of sensitive organic photodetectors.

7.
Nano Lett ; 16(12): 7829-7835, 2016 12 14.
Article in English | MEDLINE | ID: mdl-27960502

ABSTRACT

Organometal halide perovskites have shown excellent optoelectronic properties and have been used to demonstrate a variety of semiconductor devices. Colorful solar cells are desirable for photovoltaic integration in buildings and other aesthetically appealing applications. However, the realization of colorful perovskite solar cells is challenging because of their broad and large absorption coefficient that commonly leads to cells with dark-brown colors. Herein, for the first time, we report a simple and efficient strategy to achieve colorful perovskite solar cells by using the transparent conducting polymer (poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), PEDOT:PSS) as a top electrode and simultaneously as an spectrally selective antireflection coating. Vivid colors across the visible spectrum are attained by engineering optical interference effects among the transparent PEDOT:PSS polymer electrode, the hole-transporting layer and the perovskite layer. The colored perovskite solar cells display power conversion efficiency values from 12.8 to 15.1% (from red to blue) when illuminated from the FTO glass side and from 11.6 to 13.8% (from red to blue) when illuminated from the PEDOT:PSS side. The new approach provides an advanced solution for fabricating colorful perovskite solar cells with easy processing and high efficiency.

SELECTION OF CITATIONS
SEARCH DETAIL
...