Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 241: 124580, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37100321

ABSTRACT

The exploration of biopolymer-based materials to avoid hazardous chemicals in agriculture has gained enormous importance for sustainable crop protection. Due to its good biocompatibility and water solubility, carboxymethyl chitosan (CMCS) has been widely applied as a pesticide carrier biomaterial. However, the mechanism by which carboxymethyl chitosan-grafted natural product nanoparticles induce tobacco systemic resistance against bacterial wilt remains largely unknown. In this study, water-soluble CMCS-grafted daphnetin (DA) nanoparticles (DA@CMCS-NPs) were successfully synthesized, characterized, and assessed for the first time. The grafting rate of DA in CMCS was 10.05 %, and the water solubility was increased. In addition, DA@CMCS-NPs significantly increased the activities of CAT, PPO and SOD defense enzymes, activated the expression of PR1 and NPR1, and suppressed the expression of JAZ3. DA@CMCS-NPs could induce immune responses against R. solanacearum in tobacco, including increases in defense enzymes and overexpression of pathogenesis-related (PR) proteins. The application of DA@CMCS-NPs effectively suppressed the development of tobacco bacterial wilt in pot experiments, and the control efficiency was as high as 74.23 %, 67.80 %, 61.67 % at 8, 10, and 12 days after inoculation. Additionally, DA@CMCS-NPs has excellent biosafety. Therefore, this study highlighted the application of DA@CMCS-NPs in manipulating tobacco to generate defense responses against R. solanacearum, which can be attributed to systemic resistance.


Subject(s)
Chitosan , Nanoparticles , Ralstonia solanacearum , Chitosan/pharmacology , Chitosan/chemistry , Nanoparticles/chemistry , Nicotiana/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...