Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int Immunopharmacol ; 133: 112010, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38636375

ABSTRACT

BACKGROUND: Chondrocyte ferroptosis plays a critical role in the pathogenesis of osteoarthritis (OA), regulated by the SLC7A11/GPX4 signaling pathway. Icariin (ICA), a flavonoid glycoside, exhibits strong anti-inflammatory and antioxidant activities. This study investigated whether ICA could modulate the SLC7A11/GPX4 signaling to inhibit chondrocyte ferroptosis and alleviate OA. PURPOSE: The objective was to explore the impact of ICA on chondrocyte ferroptosis in OA and its modulation of the SLC7A11/GPX4 signaling pathway. METHODS: The anti-ferroptosis effects of ICA were evaluated in an interleukin-1ß (IL-1ß)-treated SW1353 cell model, using Ferrostatin-1 (Fer-1) and Erastin (Era) as ferroptosis inhibitor and inducer, respectively, along with GPX4 knockdown via lentivirus-based shRNA. Additionally, the therapeutic efficacy of ICA on OA-related articular cartilage damage was assessed in rats through histopathology and immunohistochemistry (IHC). RESULTS: IL-1ß treatment upregulated the expression of OA-associated matrix metalloproteinases (MMP3 and MMP1), a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS-5), and increased intracellular ROS, lipid ROS, and MDA levels while downregulating collagen II and SOX9 expression in SW1353 cells. ICA treatment countered the IL-1ß-induced upregulation of MMPs and ADAMTS-5, restored collagen II and SOX9 expression, and reduced intracellular ROS, lipid ROS, and MDA levels. Furthermore, IL-1ß upregulated P53 but downregulated SLC7A11 and GPX4 expression in SW1353 cells, effects that were mitigated by ICA or Fer-1 treatment. Significantly, ICA also alleviated Era-induced ferroptosis, whereas it had no effect on GPX4-silenced SW1353 cells. In vivo, ICA treatment reduced articular cartilage damage in OA rats by partially restoring collagen II and GPX4 expression, inhibiting cartilage extracellular matrix (ECM) degradation and chondrocyte ferroptosis. CONCLUSION: ICA treatment mitigated chondrocyte ferroptosis and articular cartilage damage by enhancing the SLC7A11/GPX4 signaling, suggesting its potential as a therapeutic agent for OA interventions.


Subject(s)
Amino Acid Transport System y+ , Chondrocytes , Ferroptosis , Flavonoids , Osteoarthritis , Phospholipid Hydroperoxide Glutathione Peroxidase , Rats, Sprague-Dawley , Signal Transduction , Ferroptosis/drug effects , Chondrocytes/drug effects , Chondrocytes/metabolism , Animals , Flavonoids/pharmacology , Flavonoids/therapeutic use , Humans , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Osteoarthritis/pathology , Signal Transduction/drug effects , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , Rats , Male , Interleukin-1beta/metabolism , Cartilage, Articular/drug effects , Cartilage, Articular/pathology , Cartilage, Articular/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Cell Line
2.
Open Life Sci ; 18(1): 20220747, 2023.
Article in English | MEDLINE | ID: mdl-37854319

ABSTRACT

Osteoarthritis (OA) is a painful joint disease that is common among the middle-aged and elderly populations, with an increasing prevalence. Therapeutic options for OA are limited, and the pathogenic mechanism of OA remains unclear. The roles of cytokines and signaling pathways in the development of OA is a current research hot spot. Interleukin (IL)-17 is a pleiotropic inflammatory cytokine produced mainly by T helper 17 cells that has established roles in host defense, tissue repair, lymphoid tissue metabolism, tumor progression, and pathological processes of immune diseases, and studies in recent years have identified an important role for IL-17 in the progression of OA. This narrative review focuses on the mechanisms by which IL-17 contributes to articular cartilage degeneration and synovial inflammation in OA and discusses how IL-17 and the IL-17 signaling pathway affect the pathological process of OA. Additionally, therapeutic targets that have been proposed in recent years based on IL-17 and its pathway in OA are summarized as well as recent advances in the study of IL-17 pathway inhibitors and the potential challenges of their use for OA treatment.

3.
Inflammation ; 46(5): 1764-1776, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37310645

ABSTRACT

Osteoarthritis (OA) is a multifactorial disease of the whole joint that has a complex pathogenesis. There is currently no cure for OA. Tofacitinib is a broad JAK inhibitor that can have an anti-inflammatory effect. The objective of this study was to investigate the effect of tofacitinib on the cartilage extracellular matrix in OA and determine whether tofacitinib exerts a protective effect by inhibiting the JAK1/STAT3 signaling pathway and upregulating autophagy in chondrocytes. We investigated the expression profile of OA in vitro by exposing SW1353 cells to interleukin-1ß (IL-1ß), and induced OA in vivo using the modified Hulth method in rats. We found that IL-1ß promoted the expression of OA-related matrix metalloproteinases (MMP3 and MMP13), reduced the expression of collagen II, reduced the expression of beclin1 and LC3-II/I, and promoted the accumulation of p62 in SW1353 cells. Tofacitinib attenuated IL-1ß-stimulated changes in MMPs and collagen II and restored autophagy. In IL-1ß-stimulated SW1353 cells, the JAK1/STAT3 signaling pathway was activated. Tofacitinib inhibited the IL-1ß-stimulated expression of p-JAK1 and p-STAT3 and prevented translocation of p-STAT3 to the nucleus. In the rat model of OA, tofacitinib reduced articular cartilage degeneration by delaying cartilage extracellular matrix degradation and increasing chondrocyte autophagy. Our study demonstrates that chondrocyte autophagy was impaired in experimental models of OA. Tofacitinib reduced the inflammatory response and restored the damaged autophagic flux in OA.


Subject(s)
Cartilage, Articular , Janus Kinase Inhibitors , Osteoarthritis , Rats , Animals , Chondrocytes , Janus Kinase Inhibitors/pharmacology , Osteoarthritis/pathology , Autophagy , Collagen/metabolism , Interleukin-1beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...