Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 35(33): e2303329, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37335765

ABSTRACT

Aiming at next-generation displays, high-resolution quantum dot light-emitting diodes (QLEDs) with high efficiency and transparency are highly desired. However, there is limited study involving the improvements of QLED pixel resolution, efficiency, and transparency simultaneously, which undoubtedly restricts the practical applications of QLED for next-generation displays. Here, the strategy of electrostatic force-induced deposition (EF-ID) is proposed by introducing alternating polyethyleneimine (PEI) and fluorosilane patterns to synergistically improve the pixel accuracy and transmittance of QD patterns. More importantly, the leakage current induced by the void spaces between pixels that is usually reported for high-resolution QLEDs is greatly suppressed by substrate-assisted insulating fluorosilane patterns. Finally, high-performance QLEDs with high resolution ranging from 1104 to 3031 pixels per inch (PPI) and a high efficiency of 15.6% are achieved, among the best performances of high resolution QLEDs. Notably, the high resolution QD pixels greatly enhance the transmittance of the QD patterns, thus prompting an impressive transmittance of 90.7% for the transparent QLEDs (2116 PPI), which represents the highest transmittance of transparent QLED devices. Consequently, this work contributes an effective and general approach for high-resolution QLEDs with high efficiency and transparency.

2.
Nanoscale ; 15(3): 1109-1118, 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36594200

ABSTRACT

CsPbI3 perovskite nanocrystals (NCs) are gaining popularity as promising photoactive materials for optoelectronic devices. However, their poor phase stability has caused substantial limitations in their practical application. Herein, the small-sized rare earth La cation is strategically introduced to fundamentally improve the NC phase stability against the environment, heat, and UV radiation by the partial substitution of Pb ions to suppress structural distortion and increase the formation energy. The strong interaction between La and I of the octahedra has been demonstrated to enable the effective suppression of the trap states, which promotes strengthened radiative recombination for a near-unity photoluminescence quantum yield (PLQY) of 99.3%. High energy bands have also been found for the La-doped NCs to narrow down the energy barrier for efficient hole injection. The superior optoelectronic properties of La-doped NCs promote great improvements in the perovskite light-emitting diode (PeLED) performances with a 5-fold improvement in external quantum efficiency (EQE) from 1.19 to 6.01% and 2-fold longer lifetime from 1451 to 2956 s. This work provides an effective method for small-sized metal ion-doped CsPbI3 NCs to realize high emission efficiency and phase stabilization for efficient PeLEDs.

3.
ACS Appl Mater Interfaces ; 14(18): 21636-21644, 2022 May 11.
Article in English | MEDLINE | ID: mdl-35500270

ABSTRACT

Quasi-two-dimensional (quasi-2D) perovskite has exhibited great potential to be an ideal luminescent material for perovskite light-emitting diodes (PeLEDs). However, the low-order phases (especially n = 1 phase) and the inevitable defects result in massive nonradiative recombination and poor emission efficiency. Herein, a multifunctional molecule of tetrabutylammonium dihydrogen phosphate (TDP) is introduced to simultaneously suppress the low-n phase, passivate the defects, and increase the exciton binding energy of the quasi-2D perovskite for massive radiative recombination and thus high emission efficiency. The multifunctional roles of TDP are realized by the synergistic effects of tetrabutylammonium cation and dihydrogen phosphate anion, both of which show strong interaction with the lead bromide octahedron of the perovskite. As a result, the TDP-incorporated perovskite films show a great enhancement of the emission efficiency with a remarkable increase in photoluminescence quantum yield (PLQY) from 34.6 to 96.9% at the wavelength of 522 nm. The strengthened radiative recombination promotes efficient emission efficiency with over 2.5-fold improvement in external quantum efficiency (EQE) and current efficiency (CE) from 3.27% and 10.83 cd A-1 to 9.25% and 28.35 cd A-1, respectively, as well as high brightness with over 37% enhancement from 12713 to 17536 cd m-2. Consequently, this work contributes to an efficient approach to employ a multifunctional molecule for highly emissive quasi-2D perovskites and enhanced quasi-2D PeLED performances.

4.
Small ; 18(15): e2107452, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35212138

ABSTRACT

Although all-inorganic perovskite materials present multiple fascinating optical properties, their poor stability undermines their potential application in the field of multi-color display. Herein, spatially confined CsPbBr3 nanocrystals are in situ crystallized within uniform mesoporous SiO2 nanospheres (MSNs) to regulate their size distribution, passivate their surface defects, shield them from water/oxygen, and more importantly, enhance their thermotolerance. As a result, the remnant PL intensity of the prepared spatially confined perovskite (CsPbBr3 ) nanocrystals by in situ crystallization within uniform mesoporous SiO2 nanospheres (SCP@MSNs) powders can be maintained over 98% of its initial value even after being immersed in harsh conditions (0.1 m HCl or 0.1 m NaOH) for 60 days. Furthermore, the prepared SCP@MSNs-PDMS film demonstrates astonishing thermostability by maintaining almost consistent room temperature PL intensities after continuous heating-cooling cycles between 200 and 25 °C, which would greatly improve its processability during potential industrial manufacturing. The fabricated LCD backlit based on SCP@MSNs covers 124% of NTSC standard and 95.6% of Rec. 2020 standard, indicating its great potential in practical display field.

5.
Small ; 16(48): e2005639, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33169499

ABSTRACT

The disordered dendritic growth of Li metal seriously hampers the practical application of lithium metal batteries. Great efforts are devoted to suppress the growth of dendrites, it is still necessary to explore measures of controlling dendritic growth and pave ways for normal cell operation in presence of dendrites. Herein, a modification technique of Li metal anode by a periodic Ni mesh with micrometer-sized grid is proposed for interfacial engineering. Periodic patterned Ni mesh is prepared using a novel laser direct-writing technique combined with selective electrodeposition process. The growth of Li dendrites is regulated under the effect of unique electric field distribution by the introduction of the Ni mesh. It is noteworthy that the controlled lateral growth of dendrites is successfully realized by the internal structure modification instead of any external electric or magnetic field as has been previously reported. The resultant anode exhibits a stable cycling performance with ultralow overpotential of 6-8 mV for over 1000 h at the current density of 0.5 mA cm-2 . It also presents superior electrochemical performance when assembled against LiFePO4 cathode into full cells, with an initial capacity of 133 mA h g-1 and a stable cycling performance over 160 cycles.

6.
Front Chem ; 8: 459, 2020.
Article in English | MEDLINE | ID: mdl-32626685

ABSTRACT

A large overpotential is often reported for rechargeable magnesium batteries during the deposition/stripping of magnesium, which can be detrimental to the cell performance. In this work, a three-dimensional electrode that mainly composed magnesiophilic MoSe2 (MMSE) has been fabricated and proposed as the substrate for the electrochemical deposition/stripping of magnesium metal. The magnesiophilic interface of MoSe2 has been proven by electrochemical tests of magnesium deposition test. In addition, the electrochemical property of 3D MMSE has been examined by a large-capacity (10 mAh/cm2) magnesium deposition/stripping test. The stable magnesiophilic interface of MMSE has been further confirmed by SEM characterization. Finally, the crucial effect of the magnesiophilic interface of MMSE on the overpotentials have been demonstrated by Mg deposition/stripping test under various current densities.

7.
Small ; 16(2): e1906208, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31814290

ABSTRACT

Sodium dendrite growth is responsible for short circuiting and fire hazard of metal batteries, which limits the potential application of sodium metal anode. Sodium dendrite can be effectively suppressed by applying mechanically robust electrolyte in battery systems. Herein, a composite gel polymer electrolyte (GPE) is designed and fabricated, mainly consisting of graphene oxide (GO) and polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP). With the addition of an appropriate amount of GO content, the compressive Young's modulus of 2 wt% GO+PVDF-HFP (2-GPH) composite GPE is greatly enhanced by a factor of 10, reaching 2.5 GPa, which is crucial in the suppression of sodium dendrite growth. As a result, uniform sodium deposition and ultralong reversible sodium plating/stripping (over 400 h) at high current density (5 mA cm-2 ) are achieved. Furthermore, as evidenced by molecular dynamics simulation, the GO content facilitates the sodium ion transportation, giving a high ionic conductivity of 2.3 × 10-3 S cm-1 . When coupled with Na3 V2 (PO4 )3 cathode in a full sodium metal battery, a high initial capacity of 107 mA h g-1 at 1 C (1 C = 117 mA g-1 ) is recorded, with an excellent capacity retention rate of 93.5% and high coulombic efficiency of 99.8% after 1100 cycles.

SELECTION OF CITATIONS
SEARCH DETAIL
...