Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 44(10): 2605-2608, 2019 May 15.
Article in English | MEDLINE | ID: mdl-31090743

ABSTRACT

An analog-digital hybrid optical chaos source and a corresponding secure key distribution (SKD) scheme are proposed. An analog-digital hybrid electro-optic feedback loop is introduced to enhance the robustness of the chaotic semiconductor lasers. The source, which can adopt robust digital synchronization strategies, could generate a broadband analog optical chaotic signal of high dynamical complexity. Furthermore, the source reduces the requirement on the processing speed of digital components and simplifies the hybrid system structure markedly. For demonstrating, we build a SKD system with the proposed chaos source. Since this SKD scheme is compatible with digital optical networks, the commercially available communication techniques can help to make it insensitive to impairments in fiber optic links. This feature has potential in long-haul SKD.

2.
Opt Express ; 26(17): 22491-22505, 2018 Aug 20.
Article in English | MEDLINE | ID: mdl-30130941

ABSTRACT

Bistatic radar with the separate transmitter and receiver has some attractive merits, thus obtaining many attentions. However, in a traditional bistatic radar system, there are still many problems that hinder it from practical applications. Here we introduce a bistatic radar scheme using a well-designed optical chaos system, from which the analog chaos signal could be determined by generated random binary sequence. The broad bandwidth analog signal is used as surveillance signal and the digital signal are transmitted to the receiver by optical fibers. Finally, high spatial and velocity resolutions of radar system could be obtained by using the analog chaos signal. A high-quality regeneration of the reference signal at different locations can be established by transmitting the digital sequence. Moreover, the mutual interferences could be concealed since the analog surveillance signal and the transmitted digital sequence are delivered by different paths. These could be advantageous for radar applications.

3.
Nanoscale Res Lett ; 12(1): 435, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28673053

ABSTRACT

In this paper, hierarchical Ag-decorated SnO2 microspheres were synthesized by a facile one-pot hydrothermal method. The resulting composites were characterized by XRD, SEM, TEM, XPS, BET, and FTIR analysis. The catalytic performances of the samples were evaluated with the reduction of 4-nitrophenol to 4-aminophenol by potassium borohydride (KBH4) as a model reaction. Time-dependent experiments indicated that the hierarchical microspheres assembled from SnO2 and Ag nanoparticles can be formed when the react time is less than 10 h. With the increase of hydrothermal time, SnO2 nanoparticles will self-assemble into SnO2 nanosheets and Ag nanoparticles decorated SnO2 nanosheets were obtained. When evaluated as catalyst, the obtained Ag-decorated SnO2 microsphere prepared for 36 h exhibited excellent catalytic performance with normalized rate constant (κ nor) of 6.20 min-1g-1L, which is much better than that of some previous reported catalysts. Moreover, this Ag-decorated SnO2 microsphere demonstrates good reusability after the first five cycles. In addition, we speculate the formation mechanism of the hierarchical Ag-decorated SnO2 microsphere and discussed the possible origin of the excellent catalytic activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...