Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Protein Pept Lett ; 29(11): 946-953, 2022.
Article in English | MEDLINE | ID: mdl-35996269

ABSTRACT

BACKGROUND: 3α-Hydroxysteroid dehydrogenase (3α-HSDH) reversibly catalyzes the oxidation of the C3-hydroxyl group of steroids, and has been used in clinical applications to detect serum total bile acid (TBA). In this study, A novel 3α-HSDH (called Sb 3α-HSDH) was expressed and characterized. METHODS: Plasmid pGEX-6p-1 was used for the expression of Sb 3α-HSDH in Escherichia coli (BL21), and activities were determined by recording the change in absorbance at 340 nm with/without adding of ions. A prediction of its three-dimensional structure was performed with AlphaFold. RESULTS: The substrate specificity test indicated that Sb 3α-HSDH is NAD(H)-dependent and has no activity with NADP(H). We also showed that Sb 3α-HSDH can catalyze the oxidation reaction of GCDCA and GUDCA with catalytic efficiencies (kcat/Km) of 29.060 and 45.839 s-1mM-1, respectively. The temperature dependence of catalysis suggests that Sb 3α-HSDH is a member of the mesophilic enzymes with its best activity at about 45 °C. The optimum pH of Sb 3α-HSDH was found to be between pH 8.0 and 9.0. The effect of ions, including K+, Mg2+, Na+, Cu2+, Mn2+, Fe2+, and Fe3+ on enzyme activity was evaluated and K+ and Mg2+ were found to enhance the activity of Sb 3α-HSDH by about 20% at concentrations of 200 mM and 50 mM, respectively. The well-conserved GIG motif, the active sites, and the Rossmann fold in the threedimensional structure indicate that Sb 3α-HSDH belongs to the "classical" type of SDR superfamily. CONCLUSION: We expressed and characterized a novel NAD(H)-dependent 3α-HSDH with typical threedimensional characteristics of the SDRs that exhibited substrate specificity to GCDCA and GUDCA.


Subject(s)
Hydroxysteroid Dehydrogenases , NAD , NAD/metabolism , Hydroxysteroid Dehydrogenases/chemistry , Substrate Specificity , Catalytic Domain , Escherichia coli/genetics , Escherichia coli/metabolism , Ions
2.
Int J Biol Macromol ; 204: 34-40, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35124015

ABSTRACT

3α-Hydroxysteroid dehydrogenase (3α-HSDH) plays a crucial role in the metabolism of sex hormones and bile acids. In this study, we heterologously expressed and characterized a novel 3α-HSDH (named Sa 3α-HSDH). Substrate specificity tests showed that Sa 3α-HSDH could catalyze Glycochenodeoxycholic acid (GCDCA) and Glycoursodeoxycholic acid (GUDCA) with catalytic efficiency (kcat/Km) 40.815 and 14.616 s-1 mM-1, respectively. Sa 3α-HSDH is NAD(H) dependent according to the results of coenzyme screening, and one of mesophilic enzymes with optimum temperature 40 °C. Additionally, Sa 3α-HSDH displayed the highest activity at pH 8.5. In this study, effect of metal ions on activity was investigated, and the results showed Mn2+ (10 mM) and Mg2+ (50 mM) could significantly enhance the activity by nearly 140% and 100%, respectively. Fe2+, Cu2+, Fe3+ and K+ could enhance the activity of Sa 3α-HSDH at different levels. Meanwhile, Na+ only displayed activity-declining effect. The three-dimensional structure of Sa 3α-HSDH was predicted and displayed the well-conserved α/ß folding patterns (Rossman-fold) with a central ß-sheet. These results indicated that Sa 3α-HSDH would contribute to the quantitative determination of serum total bile acids and associated bioconversion.


Subject(s)
Magnesium , NAD , Hydroxysteroid Dehydrogenases/metabolism , Ions , Manganese , NAD/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...