Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 15: 1384640, 2024.
Article in English | MEDLINE | ID: mdl-38720904

ABSTRACT

Background: For children with severe aplastic anemia, if the first immunosuppressive therapy (IST) fails, it is not recommended to choose a second IST. Therefore, for patients without matched sibling donor (MSD) and matched unrelated donor (MUD), haploidentical hematopoietic stem cell transplantation (Haplo-HSCT) can be chosen as a salvage treatment. This article aims to explore the comparison between upfront Haplo-HSCT and salvage Haplo-HSCT after IST. Methods: 29 patients received salvage Haplo-HSCT, and 50 patients received upfront Haplo-HSCT. The two groups received Bu (Busulfan, 3.2mg/kg/d*2d on days -9 to-8), CY (Cyclophosphamide, 60mg/kg/d*2d on days -4 to-3), Flu (fludarabine, 40mg/m2/d*5d on days -9 to -5) and rabbit ATG (Anti-thymocyte globulin, total dose 10mg/kg divided into days -4 to -2). Results: The OS of the salvage Haplo-HSCT group showed no difference to the upfront Haplo-HSCT group (80.2 ± 8.0% vs. 88.7 ± 4.8%, p=0.37). The FFS of the salvage Haplo-HSCT group also showed no difference to the frontline Haplo-HSCT group (75 ± 8.2% vs. 84.9 ± 5.3%, p=0.27). There was no significant difference in the incidence of other complications after transplantation between the two groups, except for thrombotic microangiopathy (TMA). In the grouping analysis by graft source, the incidence of II-IV aGVHD in patients using PBSC ± BM+UCB was lower than that in the PBSC ± BM group (p=0.010). Conclusion: Upfront Haplo-HSCT and salvage Haplo-HSCT after IST in children with acquired severe aplastic anemia have similar survival outcomes. However, the risk of TMA increases after salvage Haplo-HSCT. This article provides some reference value for the treatment selection of patients. In addition, co-transplantation of umbilical cord blood may reduce the incidence of GVHD.


Subject(s)
Anemia, Aplastic , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Salvage Therapy , Transplantation, Haploidentical , Humans , Anemia, Aplastic/therapy , Anemia, Aplastic/mortality , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Male , Female , Child , Child, Preschool , Salvage Therapy/methods , Adolescent , Graft vs Host Disease/etiology , Graft vs Host Disease/prevention & control , Immunosuppressive Agents/therapeutic use , Transplantation Conditioning/methods , Infant , Treatment Outcome , Immunosuppression Therapy/methods
2.
J Hazard Mater ; 413: 125319, 2021 07 05.
Article in English | MEDLINE | ID: mdl-33582470

ABSTRACT

Uranium(U), a highly toxic radionuclide, is becoming a great threat to soil health development, as returning nuclear waste containing U into the soil systems is increased. Numerous studies have focused on: i) tracing the source in U contaminated soils; ii) exploring U geochemistry; and iii) assessing U phyto-uptake and its toxicity to plants. Yet, there are few literature reviews that systematically summarized the U in soil-plant system in past decade. Thus, we present its source, geochemical behavior, uptake, toxicity, detoxification, and bioremediation strategies based on available data, especially published from 2018 to 2021. In this review, we examine processes that can lead to the soil U contamination, indicating that mining activities are currently the main sources. We discuss the relationship between U bioavailability in the soil-plant system and soil conditions including redox potential, soil pH, organic matter, and microorganisms. We then review the soil-plant transfer of U, finding that U mainly accumulates in roots with a quite limited translocation. However, plants such as willow, water lily, and sesban are reported to translocate high U levels from roots to aerial parts. Indeed, U does not possess any identified biological role, but provokes numerous deleterious effects such as reducing seed germination, inhibiting plant growth, depressing photosynthesis, interfering with nutrient uptake, as well as oxidative damage and genotoxicity. Yet, plants tolerate U toxicity via various defense strategies including antioxidant enzymes, compartmentalization, and phytochelatin. Moreover, we review two biological remediation strategies for U-contaminated soil: (i) phytoremediation and (ii) microbial remediation. They are quite low-cost and eco-friendly compared with traditional physical or chemical remediation technologies. Finally, we conclude some promising research challenges regarding U biogeochemical behavior in soil-plant systems. This review, thus, further indicates that the combined application of U low accumulators and microbial inoculants may be an effective strategy for the bioremediation of U-contaminated soils.


Subject(s)
Soil Pollutants , Uranium , Biodegradation, Environmental , Plants , Soil , Soil Pollutants/analysis , Soil Pollutants/toxicity , Uranium/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...