Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Graph Model ; 90: 226-234, 2019 07.
Article in English | MEDLINE | ID: mdl-31103915

ABSTRACT

The ground state structures of neutral and anionic Lnn(COT)m (Ln = Ce, Nd, Eu, Ho and Yb; n, m = 1, 2) complexes have been identified by density functional theory. Ln(COT)1,20/- and Ln2(COT)20/- complexes are found to possess sandwich ground state structures in which Ln atoms and COT molecules are alternately stacked except for Nd2COT20/-. Our calculated AEA and VDE values show good agreement with the available experimental values, which validates that our obtained ground state structures are credible. Based on the frontier molecular orbitals, we find that the bond formation between the 4f electrons of Ln atoms and the π clouds of COT molecules is weak. Then, the bond strength within these complexes is further analyzed based on the topological analysis of electron density at bond critical point. By analyzing Hirshfeld charge, we find Lnn(COT)m0/- are charge-transfer complexes with weak bonding feature.


Subject(s)
Anions/chemistry , Lanthanoid Series Elements/chemistry , Organometallic Compounds/chemistry , Crystallography, X-Ray/methods , Electronics/methods , Electrons , Models, Molecular , Molecular Structure
2.
Phys Chem Chem Phys ; 19(37): 25289-25297, 2017 Sep 27.
Article in English | MEDLINE | ID: mdl-28796272

ABSTRACT

New hypervalent molecules have emerged from a systematic exploration of the structure and bonding of MnC (M = Li, Na, K, Rb and Cs; n = 1-8) clusters via an unbiased CALYPSO structure investigation combined with density functional theory. The global minimum structures are obtained at the B3LYP/6-311+G* and CCSD(T)/6-311+G* levels of theory. The observed growth behavior clearly indicates that the ground state of MnC (M = Li, Na, K, Rb and Cs; n = 1-8) is transformed from a planar to a three-dimensional (3D) structure at n = 4. A maximum of six alkali atoms can be bound atomically to a carbon atom. The determination of the averaged binding energies Eb(n), fragmentation energies ΔE(n) and HOMO-LUMO energy gaps unambiguously supports the stability of M6C. This indicated conclusively that 6 is a magic Li-coordination number for C. The nature of bonding is further investigated by an insightful analysis of the highest occupied molecular orbital (HOMO) and the topology of chemical bonds for the most stable clusters. In the final step, electron localization functions (ELF) and density of states (DOS) are determined in order to consolidate the acquired information on the studied electronic structures.

SELECTION OF CITATIONS
SEARCH DETAIL
...