Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Behav Immun ; 119: 84-95, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38552922

ABSTRACT

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that severely affects individuals' daily life and social development. Unfortunately, there are currently no effective treatments for ASD. Dexmedetomidine (DEX) is a selective agonist of α2 adrenergic receptor (α2AR) and is widely used as a first-line medication for sedation and hypnosis in clinical practice. In recent years, there have been reports suggesting its potential positive effects on improving emotional and cognitive functions. However, whether dexmedetomidine has therapeutic effects on the core symptoms of ASD, namely social deficits and repetitive behaviors, remains to be investigated. In the present study, we employed various behavioral tests to assess the phenotypes of animals, including the three-chamber, self-grooming, marble burying, open field, and elevated plus maze. Additionally, electrophysiological recordings, western blotting, qPCR were mainly used to investigate and validate the potential mechanisms underlying the role of dexmedetomidine. We found that intraperitoneal injection of dexmedetomidine in ASD model mice-BTBR T+ Itpr3tf/J (BTBR) mice could adaptively improve their social deficits. Further, we observed a significant reduction in c-Fos positive signals and interleukin-6 (IL-6) expression level in the prelimbic cortex (PrL) of the BTBR mice treated with dexmedetomidine. Enhancing or inhibiting the action of IL-6 directly affects the social behavior of BTBR mice. Mechanistically, we have found that NF-κB p65 is a key pathway regulating IL-6 expression in the PrL region. In addition, we have confirmed that the α2AR acts as a receptor switch mediating the beneficial effects of dexmedetomidine in improving social deficits. This study provides the first evidence of the beneficial effects of dexmedetomidine on core symptoms of ASD and offers a theoretical basis and potential therapeutic approach for the clinical treatment of ASD.


Subject(s)
Adrenergic alpha-2 Receptor Agonists , Autism Spectrum Disorder , Dexmedetomidine , Disease Models, Animal , Interleukin-6 , NF-kappa B , Receptors, Adrenergic, alpha-2 , Social Behavior , Animals , Dexmedetomidine/pharmacology , Mice , Autism Spectrum Disorder/drug therapy , Autism Spectrum Disorder/metabolism , Male , Receptors, Adrenergic, alpha-2/metabolism , Receptors, Adrenergic, alpha-2/drug effects , Adrenergic alpha-2 Receptor Agonists/pharmacology , NF-kappa B/metabolism , Interleukin-6/metabolism , Signal Transduction/drug effects , Mice, Inbred C57BL , Behavior, Animal/drug effects , Down-Regulation/drug effects , Inflammation/metabolism , Inflammation/drug therapy
2.
Chem Biol Drug Des ; 103(2): e14474, 2024 02.
Article in English | MEDLINE | ID: mdl-38342769

ABSTRACT

Thrombolytic therapy or percutaneous coronary intervention for myocardial infarction often cause myocardial ischemia/reperfusion injury (MIRI) and poor prognosis of patients. This study aimed to explore the protective effect and potential mechanism of hydromorphone hydrochloride (HH) on MIRI. Fifty Sprague-Dawley male rats were randomly divided into Sham group, I/R group, HH-pre group, HH-post group, and HH-pre + post group. Except Sham group, MIRI models were established by ligating and relaxing the left anterior descending coronary artery, followed by tail vein injection of HH (0.3 µmol/L) 10 min before ligation (HH-pre group), 10 min after reperfusion (HH-post group), and twice at the above two time points (HH-pre + post group). After intervention, the cardiac function of rats was evaluated by echocardiography, and the levels of myocardial injury markers, oxidative stress indicators, and mitochondrial function indicators were detected. Next, the myocardial infarction area was evaluated by 2,3,5-triphenyltetrazolium chloride staining, mitochondrial biogenesis, and phosphoinositide 3 kinase (PI3K)/protein kinase B (Akt) signaling pathway by western blot. Compared with the I/R group, HH intervention improved cardiac function, decreased myocardial infarction area, reduced serum myocardial injury markers, alleviated oxidative stress, improved mitochondrial function, up-regulated mitochondrial biogenesis, and activated PI3K/Akt signaling pathway. Moreover, the HH-pre + post group was superior to the HH-pre and HH-post groups in the above aspects. Collectively, HH had protective effect on MIRI rats, and HH preconditioning combined with postconditioning showed optimal efficacy. Such efficacy may be achieved by promoting mitochondrial biogenesis to improve mitochondrial function and reduce oxidative stress, and activating the PI3K/Akt signaling pathway.


Subject(s)
Myocardial Infarction , Myocardial Reperfusion Injury , Humans , Rats , Male , Animals , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinase/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Rats, Sprague-Dawley , Hydromorphone/therapeutic use , Hydromorphone/pharmacology , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/metabolism , Signal Transduction , Myocardial Infarction/drug therapy , Mitochondria/metabolism
3.
Eur J Pharmacol ; 963: 176173, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37918499

ABSTRACT

BACKGROUND: The use of morphine in clinical medicine is severely constrained by tolerance. Therefore, it is essential to examine pharmacological therapies that suppress the development of morphine tolerance. Amiloride suppressed the expression of inflammatory cytokines by inhibiting microglial activation. Microglia play a crucial role in the establishment of morphine tolerance. Thus, we anticipated that amiloride might suppress the development of morphine tolerance. During this investigation, we assessed the impact of amiloride on mouse morphine tolerance. METHODS: Mice received morphine (10 mg/kg, s.c.) twice daily with intrathecally injected amiloride (0.3 µg/5 µl, 1 µg/5 µl, and 3 µg/5 µl) for nine continuous days. To assess morphine tolerance, mice underwent the tail-flick and hot plate tests. BV-2 cells were used to investigate the mechanism of amiloride. By using Western blotting, real-time PCR, and immunofluorescence labeling methods, the levels of acid-sensing ion channels (ASICs), nuclear factor kappa B (NF-kB) p65, p38 mitogen-activated protein kinase (MAPK) proteins, and neuroinflammation-related cytokines were determined. RESULTS: The levels of ASIC3 in the spinal cord were considerably increased after long-term morphine administration. Amiloride was found to delay the development of tolerance to chronic morphine assessed via tail-flick and hot plate tests. Amiloride reduced microglial activation and downregulated the cytokines IL-1ß and TNF-a by inhibiting ASIC3 in response to morphine. Furthermore, amiloride reduced p38 MAPK phosphorylation and inhibited NF-κB expression. CONCLUSIONS: Amiloride effectively reduces chronic morphine tolerance by suppressing microglial activation caused by morphine by inhibiting ASIC3.


Subject(s)
Analgesics, Opioid , Morphine , Mice , Animals , Analgesics, Opioid/pharmacology , Amiloride/pharmacology , Amiloride/therapeutic use , Neuroinflammatory Diseases , NF-kappa B/metabolism , Microglia , Cytokines/metabolism , Spinal Cord
4.
Heliyon ; 9(12): e22590, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38090016

ABSTRACT

The disorder of mitochondrial functions plays a key role in oncogenesis. It is known that TSPO (18-kDa translocator protein) lies in a peculiar location at the interface between the mitochondria and the cytosol. TSPO is found in many types of tissues and is associated with multiple cellular processes, including apoptosis, cell proliferation and the regulation of mitochondria. However, the involvement of TSPO in hepatocellular carcinoma (HCC) remains unclear. In this study, we found that TSPO is upregulated in HCC tissue and is associated with poor differentiation and poor survival. Multivariate analyses showed that TSPO was an independent predictive factor for poor prognosis in HCC patients. For the first time, we provided evidence that TSPO knockdown suppressed HCC cell proliferation in vitro. Hence, TSPO knockdown-induced apoptosis by disturbing mitochondrial function by enhancing the formation of reactive oxygen species (ROS) and decreasing the mitochondrial membrane potential (ΔΨm). An assay exploring the underlying mechanism revealed that TSPO knockdown modulated apoptotic regulatory proteins by regulating the ERK signaling pathway. Through a functional assay and an in vivo mouse model, the anti-cancer effect of PK11195, a specific ligand of TSPO, on HCC was revealed. In summary, TSPO may potentially serve as a prognostic biomarker, and TSPO might be a potential therapeutic target for HCC.

5.
Ann Med ; 55(1): 778-792, 2023 12.
Article in English | MEDLINE | ID: mdl-36856519

ABSTRACT

OBJECTIVES: Anesthetic drugs had been reported may impact the bio-behavior of the tumor. Propofol and sevoflurane are common anesthetics in the operation for glioblastoma (GBM). This study aims to establish a co-expression prognostic-related genes signature base on propofol and sevoflurane anesthesia to predict prognosis and immunotherapy response in GBM. METHOD: GPM tissues with different anesthetics gene expression profiles (GSE179004) were obtained from the Gene Expression Omnibus (GEO) database. Core modules and central genes associated with propofol and sevoflurane anesthesia were identified by weighted gene coexpression network analysis (WGCNA) and establish a risk score prognostic model. Immune cell signature analysis in TCGA datasets was predicted via CIBERSORT. At last, serum methylation level of O6-methylguanine-DNA methyltransferase (MGMT) promoter was detected in GPM patient in different time during perioperative period. RESULTS: The burlywood1 group screened was significantly associated with sevoflurane-treated GBM tissue. 22 independent prognostic differential genes were construct a prognostic-related genes risk score in GBM, and showed good predictive ability. The risk score was strongly correlated with the age of the patients, but not with the sex of the patients. In addition, the differential responses to immunotherapy in high and low risk groups were analyzed, indicating that sevoflurane signature genes were consistent in the classification of gliomas. High-risk patients have high T-cell damage score and are less sensitive to immunotherapy. At last, serum methylation level of MGMT promoter was decreased in GBM patients during propofol and sevoflurane anesthesia. CONCLUSIONS: Propofol and sevoflurane anesthesia associated impact on the gene expression of GBM, included the methylation level of MGMT promoter. Propofol and sevoflurane anesthesia-based risk score prognostic model, which has good prognostic power and is an independent prognostic factor in GBM patients. Therefore, this model can be used as a new biomarker for judging the prognosis of GBM patients.KEY MESSAGESPropofol and sevoflurane anesthesia-based risk score prognostic model has good prognostic power and is an independent prognostic factor in GBM patients.High Propofol and sevoflurane anesthesia-based risk score GBM patients have high T-cell damage scores and are less sensitive to immunotherapy.Serum methylation level of MGMT promoter decrease during propofol and sevoflurane anesthesia in GBM patients.


Subject(s)
Anesthesia , Glioblastoma , Propofol , Humans , Sevoflurane , Prognosis , Immunotherapy
6.
Mol Pain ; 19: 17448069231158289, 2023.
Article in English | MEDLINE | ID: mdl-36733258

ABSTRACT

Neuropathic pain is a common dose-limiting side effect of oxaliplatin, which hampers the effective treatment of tumors. Here, we found that upregulation of transcription factor NFATc2 decreased the expression of Beclin-1, a critical molecule in autophagy, in the spinal dorsal horn, and contributed to neuropathic pain following oxaliplatin treatment. Meanwhile, manipulating autophagy levels by intrathecal injection of rapamycin (RAPA) or 3-methyladenine (3-MA) differentially altered mechanical allodynia in oxaliplatin-treated or naïve rats. Utilizing chromatin immunoprecipitation-sequencing (ChIP-seq) assay combined with bioinformatics analysis, we found that NFATc2 negatively regulated the transcription of tuberous sclerosis complex protein 2 (TSC2), which contributed to the oxaliplatin-induced Beclin-1 downregulation. Further assays revealed that NFATc2 regulated histone H4 acetylation and methylation in the TSC2 promoter site 1 in rats' dorsal horns with oxaliplatin treatment. These results suggested that NFATc2 mediated the epigenetic downregulation of the TSC2/Beclin-1 autophagy pathway and contributed to oxaliplatin-induced mechanical allodynia, which provided a new therapeutic insight for chemotherapy-induced neuropathic pain.


Subject(s)
Neuralgia , Tuberous Sclerosis , Animals , Rats , Beclin-1/genetics , Beclin-1/metabolism , Beclin-1/pharmacology , Disease Models, Animal , Down-Regulation/genetics , Epigenesis, Genetic , Hyperalgesia/chemically induced , Hyperalgesia/genetics , Hyperalgesia/drug therapy , Neuralgia/chemically induced , Neuralgia/genetics , Neuralgia/drug therapy , Oxaliplatin , Rats, Sprague-Dawley , Spinal Cord Dorsal Horn/metabolism , Transcription Factors/metabolism , Tuberous Sclerosis/metabolism
7.
Neurochem Res ; 48(1): 229-237, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36064821

ABSTRACT

Evidence shows that miRNAs are deeply involved in nervous system diseases, but whether miRNAs contribute to the bortezomib (BTZ)-induced neuropathic pain remains unclear. We aimed to investigate whether miRNAs contribute to bortezomib (BTZ)-induced neuropathic pain and explore the related downstream cascades. The level of miRNAs in the spinal dorsal horn was explored using miRNA microarray and PCR. MiR-672-5p was significantly downregulated in dorsal horn neurons in the rats with BTZ treatment. Intrathecal injection of miR-672-5p agomir blunted the increase of the amplitude and frequency of sEPSCs in dorsal horn neurons and mechanical allodynia induced by BTZ. In addition, the knockdown of miR-672-5p by intrathecal injection of antagomir increased the amplitude and frequency of sEPSCs in dorsal horn neurons and decreased the mechanical withdrawal threshold in naïve rats. Furthermore, silico analysis and the data from subsequent assays indicated that REEP6, a potential miR-672-5p-regulating molecule, was increased in the spinal dorsal horn of rats with BTZ-induced neuropathic pain. Blocking REEP6 alleviated the mechanical pain behavior induced by BTZ, whereas overexpressing REEP6 induced pain hypersensitivity in naïve rats. Importantly, we further found that miR-672-5p was expressed in the REEP6-positive cells, and overexpression or knockdown of miR-672-5p reversely regulated the REEP6 expression. Bioinformatics analysis and double-luciferase reporter assay showed the existence of interaction sites between REEP6 mRNA and miR-672-5p. Overall, our study demonstrated that miR-672-5p directly regulated the expression of REEP6, which participated in the neuronal hyperexcitability in the spinal dorsal horn and neuropathic pain following BTZ treatment. This signaling pathway may potentially serve as a novel therapeutic avenue for chemotherapeutic-induced mechanical hypersensitivity.


Subject(s)
MicroRNAs , Neuralgia , Rats , Animals , Bortezomib , Up-Regulation , Rats, Sprague-Dawley , Neuralgia/drug therapy , Spinal Cord Dorsal Horn/metabolism , Hyperalgesia/chemically induced , Hyperalgesia/metabolism , MicroRNAs/metabolism
8.
Neurol Res ; 43(1): 71-77, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32985377

ABSTRACT

OBJECTIVE: As an intravenous anesthetic, propofol has been exhibited to provide excellent clinical analgesia. Whether propofol has amelioration property for NP and neuroinflammation remains unexplored. The present study was arranged to probe the role of propofol in the mitigation of NP and neuroinflammation in rats and underlying mechanisms. METHODS: Rats were randomly classified into the following groups: Model, Sham, Control, Propofol, GW9662, and Saline groups. The radiant heat stimulation was used to measure paw withdrawal latency (PWL), and mechanical stimulation was employed to detect paw withdrawal threshold (PWT). Subsequently, the expression of GFAP was assessed by immunofluorescence to reflect the activation of astrocyte. qRT-PCR and Western blot were utilized for the performance of mRNA and protein expression levels of PPAR γ as well as inflammation factors (TNF-α, IL-1ß, and IL-6). RESULTS: Pentobarbital sodium anesthesia significantly shortened the PWL and PWT, suppressed PPAR γ expression in rats in addition to elevating astrocyte activation and inflammation response. Propofol treatment attenuated the NP of rats as evidenced by restrained astrocyte activation level and inflammation factor levels. Rats treated with propofol had markedly heightened PPAR γ expression. PPAR γ exposure ameliorated NP and inflammation degree, which demonstrated by elevated astrocyte activation and inflammation levels as well as suppressed PWL and PWT in rats injected with PPAR γ inhibitor. Besides, PPAR γ decreased the expression level of ß-catenin. CONCLUSION: Propofol ameliorates NP and neuroinflammation of rats by up-regulating PPAR γ expression to block the Wnt/ß-catenin pathway.


Subject(s)
Anesthetics, Intravenous/pharmacology , Inflammation/metabolism , Neuralgia/metabolism , PPAR gamma/metabolism , Propofol/pharmacology , Wnt Signaling Pathway/drug effects , Animals , Male , PPAR gamma/drug effects , Rats , Rats, Inbred F344 , Up-Regulation
9.
Int J Neuropsychopharmacol ; 23(4): 257-267, 2020 04 23.
Article in English | MEDLINE | ID: mdl-32124922

ABSTRACT

BACKGROUND: Although the action mechanism of antineoplastic agents is different, oxaliplatin, paclitaxel, or bortezomib as first-line antineoplastic drugs can induce painful neuropathy. In rodents, mechanical allodynia is a common phenotype of painful neuropathy for 3 chemotherapeutics. However, whether there is a common molecular involved in the different chemotherapeutics-induced painful peripheral neuropathy remains unclear. METHODS: Mechanical allodynia was tested by von Frey hairs following i.p. injection of vehicle, oxaliplatin, paclitaxel, or bortezomib in Sprague-Dawley rats. Reduced representation bisulfite sequencing and methylated DNA immunoprecipitation were used to detect the change of DNA methylation. Western blot, quantitative polymerase chain reaction, chromatin immunoprecipitation, and immunohistochemistry were employed to explore the molecular mechanisms. RESULTS: In 3 chemotherapeutic models, oxaliplatin, paclitaxel, or bortezomib accordantly upregulated the expression of transient receptor potential cation channel, subfamily C6 (TRPC6) mRNA and protein without affecting the DNA methylation level of TRPC6 gene in DRG. Inhibition of TRPC6 by using TRPC6 siRNA (i.t., 10 consecutive days) relieved mechanical allodynia significantly following application of chemotherapeutics. Furthermore, the downregulated recruitment of DNA methyltransferase 3 beta (DNMT3b) at paired box protein 6 (PAX6) gene led to the hypomethylation of PAX6 gene and increased PAX6 expression. Finally, the increased PAX6 via binding to the TPRC6 promoter contributes to the TRPC6 increase and mechanical allodynia following chemotherapeutics treatment. CONCLUSIONS: The TRPC6 upregulation through DNMT3b-mediated PAX6 gene hypomethylation participated in mechanical allodynia following application of different chemotherapeutic drugs.


Subject(s)
Antineoplastic Agents/pharmacology , DNA (Cytosine-5-)-Methyltransferases/drug effects , DNA Methylation/drug effects , Ganglia, Spinal/drug effects , Gene Expression/drug effects , Hyperalgesia/chemically induced , Neuralgia/chemically induced , PAX6 Transcription Factor/drug effects , TRPC Cation Channels/drug effects , Animals , Bortezomib/pharmacology , Disease Models, Animal , Hyperalgesia/drug therapy , Hyperalgesia/etiology , Male , Neuralgia/complications , Oxaliplatin/pharmacology , Paclitaxel/pharmacology , Rats , Rats, Sprague-Dawley , TRPC Cation Channels/antagonists & inhibitors , Up-Regulation/drug effects , DNA Methyltransferase 3B
SELECTION OF CITATIONS
SEARCH DETAIL
...