Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Discov ; 10(8): 1174-1193, 2020 08.
Article in English | MEDLINE | ID: mdl-32404308

ABSTRACT

Mechanisms driving resistance to cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) in hormone receptor-positive (HR+) breast cancer have not been clearly defined. Whole-exome sequencing of 59 tumors with CDK4/6i exposure revealed multiple candidate resistance mechanisms including RB1 loss, activating alterations in AKT1, RAS, AURKA, CCNE2, ERBB2, and FGFR2, and loss of estrogen receptor expression. In vitro experiments confirmed that these alterations conferred CDK4/6i resistance. Cancer cells cultured to resistance with CDK4/6i also acquired RB1, KRAS, AURKA, or CCNE2 alterations, which conferred sensitivity to AURKA, ERK, or CHEK1 inhibition. Three of these activating alterations-in AKT1, RAS, and AURKA-have not, to our knowledge, been previously demonstrated as mechanisms of resistance to CDK4/6i in breast cancer preclinically or in patient samples. Together, these eight mechanisms were present in 66% of resistant tumors profiled and may define therapeutic opportunities in patients. SIGNIFICANCE: We identified eight distinct mechanisms of resistance to CDK4/6i present in 66% of resistant tumors profiled. Most of these have a therapeutic strategy to overcome or prevent resistance in these tumors. Taken together, these findings have critical implications related to the potential utility of precision-based approaches to overcome resistance in many patients with HR+ metastatic breast cancer.This article is highlighted in the In This Issue feature, p. 1079.


Subject(s)
Antineoplastic Agents/therapeutic use , Breast Neoplasms/genetics , Cell Cycle Proteins/antagonists & inhibitors , Drug Resistance, Neoplasm/genetics , Protein Kinase Inhibitors/therapeutic use , Biopsy , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/surgery , Cell Line, Tumor , Checkpoint Kinase 1 , Female , Genomics , Humans , Proto-Oncogene Proteins c-akt , Proto-Oncogene Proteins p21(ras) , Receptors, Steroid/genetics , Retinoblastoma Binding Proteins , Ubiquitin-Protein Ligases , Exome Sequencing
2.
Cancer Res ; 79(9): 2352-2366, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30819666

ABSTRACT

Combinatorial inhibition of MEK1/2 and CDK4/6 is currently undergoing clinical investigation in NRAS-mutant melanoma. To prospectively map the landscape of resistance to this investigational regimen, we utilized a series of gain- and loss-of-function forward genetic screens to identify modulators of resistance to clinical inhibitors of MEK1/2 and CDK4/6 alone and in combination. First, we identified NRAS-mutant melanoma cell lines that were dependent on NRAS for proliferation and sensitive to MEK1/2 and CDK4/6 combination treatment. We then used a genome-scale ORF overexpression screen and a CRISPR knockout screen to identify modulators of resistance to each inhibitor alone or in combination. These orthogonal screening approaches revealed concordant means of achieving resistance to this therapeutic modality, including tyrosine kinases, RAF, RAS, AKT, and PI3K signaling. Activated KRAS was sufficient to cause resistance to combined MEK/CDK inhibition and to replace genetic depletion of oncogenic NRAS. In summary, our comprehensive functional genetic screening approach revealed modulation of resistance to the inhibition of MEK1/2, CDK4/6, or their combination in NRAS-mutant melanoma. SIGNIFICANCE: These findings reveal that NRAS-mutant melanomas can acquire resistance to genetic ablation of NRAS or combination MEK1/2 and CDK4/6 inhibition by upregulating activity of the RTK-RAS-RAF and RTK-PI3K-AKT signaling cascade.


Subject(s)
Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Drug Resistance, Neoplasm/genetics , GTP Phosphohydrolases/genetics , MAP Kinase Kinase 1/antagonists & inhibitors , MAP Kinase Kinase 2/antagonists & inhibitors , Melanoma/drug therapy , Membrane Proteins/genetics , Mutation , Antineoplastic Agents/pharmacology , Apoptosis , Cell Cycle Checkpoints , Cell Proliferation , Humans , Melanoma/genetics , Melanoma/pathology , Phosphorylation , Signal Transduction/drug effects , Tumor Cells, Cultured
3.
Cancer Discov ; 6(10): 1134-1147, 2016 10.
Article in English | MEDLINE | ID: mdl-27604488

ABSTRACT

PIK3CA (which encodes the PI3K alpha isoform) is the most frequently mutated oncogene in breast cancer. Small-molecule PI3K inhibitors have shown promise in clinical trials; however, intrinsic and acquired resistance limits their utility. We used a systematic gain-of-function approach to identify genes whose upregulation confers resistance to the PI3K inhibitor BYL719 in breast cancer cells. Among the validated resistance genes, Proviral Insertion site in Murine leukemia virus (PIM) kinases conferred resistance by maintaining downstream PI3K effector activation in an AKT-independent manner. Concurrent pharmacologic inhibition of PIM and PI3K overcame this resistance mechanism. We also observed increased PIM expression and activity in a subset of breast cancer biopsies with clinical resistance to PI3K inhibitors. PIM1 overexpression was mutually exclusive with PIK3CA mutation in treatment-naïve breast cancers, suggesting downstream functional redundancy. Together, these results offer new insights into resistance to PI3K inhibitors and support clinical studies of combined PIM/PI3K inhibition in a subset of PIK3CA-mutant cancers. SIGNIFICANCE: PIM kinase overexpression confers resistance to small-molecule PI3K inhibitors. Combined inhibition of PIM and PI3K may therefore be warranted in a subset of breast cancers. Cancer Discov; 6(10); 1134-47. ©2016 AACR.This article is highlighted in the In This Issue feature, p. 1069.


Subject(s)
Breast Neoplasms/genetics , Drug Resistance, Neoplasm , Proto-Oncogene Proteins c-pim-1/genetics , Up-Regulation , Breast Neoplasms/drug therapy , Cell Line, Tumor , Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Class I Phosphatidylinositol 3-Kinases/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , MCF-7 Cells , Protein Kinase Inhibitors/pharmacology , Thiazoles/pharmacology
4.
Mol Cancer Ther ; 14(12): 2700-11, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26351322

ABSTRACT

RAF and MEK inhibitors are effective in BRAF-mutant melanoma but not in BRAF-mutant colorectal cancer. To gain additional insights into this difference, we performed a genome-scale pooled shRNA enhancer screen in a BRAF-mutant, RAF inhibitor-resistant colorectal cancer cell line exposed to the selective RAF inhibitor PLX4720. We identified multiple genes along the receptor tyrosine kinase (RTK)/mitogen-activated protein kinase (MAPK) signaling axis that, when suppressed, either genetically or pharmacologically, sensitized cells to the selective RAF inhibitor through sustained inhibition of MAPK signaling. Strikingly, CRAF was a key mediator of resistance that could be overcome by the use of pan-RAF inhibitors in combination with a MEK inhibitor. Furthermore, the combination of pan-RAF and MEK inhibitors displayed strong synergy in melanoma and colorectal cancer cell lines with RAS-activating events such as RTK activation, KRAS mutation, or NF1 loss-of-function mutations. Combinations of selective RAF inhibitors, such as PLX4720 or dabrafenib, with MEK inhibitors did not incur such profound synergy, suggesting that inhibition of CRAF by pan-RAF inhibitors plays a key role in determining cellular response. Importantly, in contrast to the modest activity seen with single-agent treatment, dual pan-RAF and MEK inhibition results in the induction of apoptosis, greatly enhancing efficacy. Notably, combined pan-RAF and MEK inhibition can overcome intrinsic and acquired resistance to single-agent RAF/MEK inhibition, supporting dual pan-RAF and MEK inhibition as a novel therapeutic strategy for BRAF- and KRAS-mutant cancers.


Subject(s)
Colorectal Neoplasms/drug therapy , MAP Kinase Kinase Kinases/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras)/genetics , raf Kinases/genetics , Apoptosis/drug effects , Cell Line, Tumor , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Drug Resistance, Neoplasm/genetics , Humans , Indoles/administration & dosage , MAP Kinase Kinase Kinases/genetics , MAP Kinase Signaling System/drug effects , Mutation , Protein Kinase Inhibitors/administration & dosage , Sulfonamides/administration & dosage , raf Kinases/antagonists & inhibitors
5.
PLoS One ; 10(4): e0123311, 2015.
Article in English | MEDLINE | ID: mdl-25909381

ABSTRACT

Accumulation and degradation of scar tissue in fibrotic liver disease occur slowly, typically over many years. Direct measurement of fibrogenesis, the rate of scar tissue deposition, may provide valuable therapeutic and prognostic information. We describe here results from a pilot study utilizing in vivo metabolic labeling to measure the turnover rate of hepatic collagen and collagen-associated proteins in plasma for the first time in human subjects. Eight subjects with chronic liver disease were labeled with daily oral doses of 2H2O for up to 8 weeks prior to diagnostic liver biopsy and plasma collection. Tandem mass spectrometry was used to measure the abundance and fractional synthesis rate (FSR) of proteins in liver and blood. Relative protein abundance and FSR data in liver revealed marked differences among subjects. FSRs of hepatic type I and III collagen ranged from 0.2-0.6% per day (half-lives of 4 months to a year) and correlated significantly with worsening histologic fibrosis. Analysis of plasma protein turnover revealed two collagen-associated proteins, lumican and transforming growth factor beta-induced-protein (TGFBI), exhibiting FSRs that correlated significantly with FSRs of hepatic collagen. In summary, this is the first direct measurement of liver collagen turnover in vivo in humans and suggests a high rate of collagen remodeling in advanced fibrosis. In addition, the FSRs of collagen-associated proteins in plasma are measurable and may provide a novel strategy for monitoring hepatic fibrogenesis rates.


Subject(s)
Carrier Proteins/blood , Collagen/metabolism , Liver Diseases/metabolism , Liver Diseases/pathology , Adult , Aged , Biopsy , Cluster Analysis , Female , Humans , Liver/metabolism , Liver/pathology , Liver Cirrhosis/blood , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver Diseases/blood , Liver Diseases/diagnosis , Liver Diseases/etiology , Male , Middle Aged , Pilot Projects , Protein Binding , Proteome , Proteomics/methods , Transforming Growth Factor beta1/metabolism
6.
Mol Cell Proteomics ; 13(7): 1741-52, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24741116

ABSTRACT

Fibrotic disease is characterized by the pathological accumulation of extracellular matrix (ECM) proteins. Surprisingly, very little is known about the synthesis and degradation rates of the many proteins and proteoglycans that constitute healthy or pathological extracellular matrix. A comprehensive understanding of altered ECM protein synthesis and degradation during the onset and progression of fibrotic disease would be immensely valuable. We have developed a dynamic proteomics platform that quantifies the fractional synthesis rates of large numbers of proteins via stable isotope labeling and LC/MS-based mass isotopomer analysis. Here, we present the first broad analysis of ECM protein kinetics during the onset of experimental pulmonary fibrosis. Mice were labeled with heavy water for up to 21 days following the induction of lung fibrosis with bleomycin. Lung tissue was subjected to sequential protein extraction to fractionate cellular, guanidine-soluble ECM proteins and residual insoluble ECM proteins. Fractional synthesis rates were calculated for 34 ECM proteins or protein subunits, including collagens, proteoglycans, and microfibrillar proteins. Overall, fractional synthesis rates of guanidine-soluble ECM proteins were faster than those of insoluble ECM proteins, suggesting that the insoluble fraction reflected older, more mature matrix components. This was confirmed through the quantitation of pyridinoline cross-links in each protein fraction. In fibrotic lung tissue, there was a significant increase in the fractional synthesis of unique sets of matrix proteins during early (pre-1 week) and late (post-1 week) fibrotic response. Furthermore, we isolated fast turnover subpopulations of several ECM proteins (e.g. type I collagen) based on guanidine solubility, allowing for accelerated detection of increased synthesis of typically slow-turnover protein populations. This establishes the presence of multiple kinetic pools of pulmonary collagen in vivo with altered turnover rates during evolving fibrosis. These data demonstrate the utility of dynamic proteomics in analyzing changes in ECM protein turnover associated with the onset and progression of fibrotic disease.


Subject(s)
Collagen Type I/metabolism , Extracellular Matrix Proteins/metabolism , Extracellular Matrix/pathology , Pulmonary Fibrosis/pathology , Animals , Basement Membrane/metabolism , Bleomycin/pharmacology , Collagen Type I/biosynthesis , Deuterium Oxide , Extracellular Matrix/metabolism , Gas Chromatography-Mass Spectrometry , Gene Expression Profiling , Isotope Labeling , Mice , Mice, Inbred C57BL , Microfibrils/metabolism , Proteoglycans/metabolism , Proteomics , Pulmonary Fibrosis/chemically induced
7.
PLoS One ; 8(7): e70199, 2013.
Article in English | MEDLINE | ID: mdl-23894616

ABSTRACT

Previous studies have shown that the small molecule iron transport inhibitor ferristatin (NSC30611) acts by down-regulating transferrin receptor-1 (TfR1) via receptor degradation. In this investigation, we show that another small molecule, ferristatin II (NSC8679), acts in a similar manner to degrade the receptor through a nystatin-sensitive lipid raft pathway. Structural domains of the receptor necessary for interactions with the clathrin pathway do not appear to be necessary for ferristatin II induced degradation of TfR1. While TfR1 constitutively traffics through clathrin-mediated endocytosis, with or without ligand, the presence of Tf blocked ferristatin II induced degradation of TfR1. This effect of Tf was lost in a ligand binding receptor mutant G647A TfR1, suggesting that Tf binding to its receptor interferes with the drug's activity. Rats treated with ferristatin II have lower TfR1 in liver. These effects are associated with reduced intestinal (59)Fe uptake, lower serum iron and transferrin saturation, but no change in liver non-heme iron stores. The observed hypoferremia promoted by degradation of TfR1 by ferristatin II appears to be due to induced hepcidin gene expression.


Subject(s)
Antigens, CD/metabolism , Biphenyl Compounds/pharmacology , Down-Regulation/drug effects , Receptors, Transferrin/metabolism , Sulfones/pharmacology , Animals , Antigens, CD/genetics , Cell Line, Tumor , Clathrin/metabolism , HeLa Cells , Hemochromatosis Protein , Histocompatibility Antigens Class I/metabolism , Humans , Iron , Liver , Male , Membrane Microdomains , Membrane Proteins/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Transferrin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...