Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 40(16): 4087-94, 2011 Apr 28.
Article in English | MEDLINE | ID: mdl-21384030

ABSTRACT

An effective method for the synthesis of LiFe(0.975)Rh(0.025)PO(4) nanorods to serve as a cathode material for lithium-ion batteries is described. During their preparation, L-lysine was used as the growth director of nanorods. The contribution from chloride ions to the formation of the unique nanorods was also investigated. The samples were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, Mössbauer measurements, scanning electron microscopy, electronic conductivity measurements, and transmission electron microscopy. The pH of the solution played a key role in controlling the particle size of the samples. The sample prepared at a pH of 9.5 exhibited excellent electrochemical performance. It delivered an initial discharge capacity of 143.1 mA h g(-1), and a capacity fade of only 7.7% was observed after 200 cycles at 2.5 C over a voltage range of 2.0-4.2 V. Furthermore, its discharge capacity remained stable for values as high as 20 C. The excellent electrochemical performance of LiFe(0.975)Rh(0.025)PO(4) nanorods can be attributed their unique nanorod structure, which limits the distance of lithium ion diffusion in the electrode material to the radius of the nanorods and decreases the surface-film resistance for the charge-transfer process.

SELECTION OF CITATIONS
SEARCH DETAIL
...