Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Nutr ; 11: 1329579, 2024.
Article in English | MEDLINE | ID: mdl-38385012

ABSTRACT

Introduction: The fruiting body of Ganoderma lucidum has been believed to possess a wide range of therapeutic effects. There are two main methods for artificial cultivation of G. lucidum to produce the fruiting body, namely wood log cultivation and substitute cultivation. The impact of cultivation substrates on the composition of bioactive compounds remains largely unexplored. This study aims to compare the antioxidant activities and triterpenoid profiles of the fruiting bodies of G. lucidum that cultivated through wood log cultivation (WGL) and substitute cultivation (SGL) methods. Methods: The antioxidant activities, including the DPPH radical scavenging, hydroxyl radical scavenging, superoxide radical scavenging, and total antioxidant activities, were assessed in both WGL and SGL samples. Furthermore, the UHPLC-Q-Orbitrap-MS technique was employed to compare their phytochemical profiles, with a specific emphasis on triterpenoid constituents. Results and discussion: It was found that WGL samples exhibited significantly higher total triterpenoid content, DPPH radical scavenging activity, and total antioxidant activity. Furthermore, an untargeted metabolomics approach employing UHPLC-Q-Orbitrap-MS tentatively identified a total of 96 triterpenoids. Distinguishingly different triterpenoid profiles between the two types of G. lucidum samples were revealed via the utilization of principal component analysis (PCA) and hierarchical cluster analysis (HCA). Specifically, 17 triterpenoids showed significant differences. Of these triterpenoids, 6 compounds, such as ganosporelactone B, ganoderol A, ganoderic acid A, ganoderic acid alpha, were significantly higher in SGL samples; 11 compounds, such as lucidenic acid A, lucidenic acid D1, lucidenic acid F, lucidenic acid G, lucidenic acid J, ganoderic acid E, and ganoderic acid O, were significantly higher in WGL samples. These findings expand our knowledge regarding the impact of cultivation substrate on the antioxidant activities and triterpenoid profiles of G. lucidum, and offer practical implications for its cultivation.

2.
Molecules ; 27(15)2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35897876

ABSTRACT

The rhizomes of Polygonatum sibiricum are commonly consumed as food and also used as medicine. However, the metabolic profile of P. sibiricum has not been fully revealed yet. Recently, we developed a novel evergreen species of P. sibiricum. The objectives of this study were to compare the metabolic profiles of two types of P. sibiricum, i.e., the newly developed evergreen type (Gtype) and a wide-type (Wtype), by using UHPLC-Q-Orbitrap-MS-based untargeted metabolomics approach. A total of 263 and 258 compounds in the positive and negative modes of the mass spectra were tentatively identified. Distinctively different metabolomic profiles of these two types of P. sibiricum were also revealed by principal component analysis (PCA) and principal coordinates analysis (PCoA). Furthermore, by using partial least squares discriminant analysis (PLS-DA) modeling, it was found that, as compared with Wtype, Gtype samples had significantly higher content of oxyberberine, proliferin, alpinetin, and grandisin. On the other hand, 15 compounds, including herniarin, kaempferol 7-neohesperidoside, benzyl beta-primeveroside, vanillic acid, biochanin A, neoschaftoside, benzyl gentiobioside, cornuside, hydroxytyrosol-glucuronide, apigenin-pentosyl-glucoside, obacunone, 13-alpha-(21)-epoxyeurycomanone, vulgarin, digitonin, and 3-formylindole, were discovered to have higher abundance in Wtype samples. These distinguishing metabolites suggest the different beneficial health potentials and flavor attributes of the two types of P. sibiricum rhizomes.


Subject(s)
Polygonatum , Chromatography, High Pressure Liquid , Mass Spectrometry , Metabolomics , Polygonatum/chemistry , Rhizome/chemistry
3.
Biochem Biophys Res Commun ; 527(1): 283-288, 2020 06 18.
Article in English | MEDLINE | ID: mdl-32446381

ABSTRACT

Lysyl oxidase (LOX) is involved in fibrosis by catalyzing collagen cross-linking. Previous work observed that Triptolide (TPL) alleviated radiation-induced pulmonary fibrosis (RIPF), but it is unknown whether the anti-RIPF effect of TPL is related to LOX. In a mouse model of RIPF, we found that LOX persistently increased in RIPF which was significantly lowered by TPL. Excessive LOX aggravated fibrotic lesions in RIPF, while LOX inhibition mitigated RIPF. Irradiation enhanced the transcription and synthesis of LOX by lung fibroblasts through IKKß/NFκB activation, and siRNA knockdown IKKß largely abolished LOX production. By interfering radiation induced IKKß activation, TPL prevented NFκB nuclear translocation and DNA binding, and potently decreased LOX synthesis. Our results demonstrate that the anti-RIPF effect of TPL is associated with reduction of LOX production which mediated by inhibition of IKKß/NFκB pathway.


Subject(s)
Diterpenes/pharmacology , Extracellular Matrix Proteins/antagonists & inhibitors , I-kappa B Kinase/antagonists & inhibitors , Phenanthrenes/pharmacology , Protein-Lysine 6-Oxidase/antagonists & inhibitors , Pulmonary Fibrosis/drug therapy , Radiation Injuries/drug therapy , Animals , Diterpenes/administration & dosage , Dose-Response Relationship, Drug , Epoxy Compounds/administration & dosage , Epoxy Compounds/pharmacology , Extracellular Matrix Proteins/biosynthesis , Female , I-kappa B Kinase/metabolism , Injections, Intravenous , Mice , Mice, Inbred C57BL , Molecular Structure , Phenanthrenes/administration & dosage , Protein-Lysine 6-Oxidase/biosynthesis , Pulmonary Fibrosis/metabolism , Radiation Injuries/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...