Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Biochim Biophys Sin (Shanghai) ; 50(7): 651-657, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-29901713

ABSTRACT

Ischemia/reperfusion (I/R) is a major cause of acute kidney injury (AKI), along with delayed graft function, which can trigger chronic kidney injury by stimulating epithelial to mesenchymal transition (EMT) in the kidney canaliculus. Sphingosine 1-phosphate receptor 1 (S1P1) is a G protein-coupled receptor that is indispensable for vessel homeostasis. This study aimed to investigate the influence of S1P1 on the mechanisms underlying I/R-induced EMT in the kidney using in vivo and in vitro models. Wild-type (WT) and S1P1-overexpressing kidney canaliculus cells were subject to hypoxic conditions followed by reoxygenation in the presence or absence of FTY720-P, a potent S1P1 agonist. In vivo, bilateral arteria renalis in wild-type mice and mice with silenced S1P1 were clamped for 30 min to obtain I/R models. We found that hypoxia/reoxygenation (H/R) significantly enhanced the expressions of EMT biomarkers and down-regulated S1P1 expression in wild-type canaliculus cells. In contrast, FTY720-P treatment or overexpression of S1P1 significantly suppressed EMT in wild-type canaliculus cells. Furthermore, after 48-72 h, a significant upregulation of EMT biomarker expression was triggered by I/R in mice with silenced S1P1, while the expressions of these markers did not change in wild-type mice. A kt activity was increased with H/R-induced EMT, suggesting that the protective influence of FTY720-P was due to its inhibition of PI3K/Akt. Therefore, the results of this study provide evidence that down-regulation of S1P1 expression is essential for the generation and progression of EMT triggered by I/R. S1P1 exhibits a prominent inhibitory effect on kidney I/R-induced EMT in the kidney by affecting the PI3K/Akt pathway.


Subject(s)
Epithelial-Mesenchymal Transition , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Lysosphingolipid/metabolism , Reperfusion Injury/metabolism , Animals , Cell Line , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Gene Expression/drug effects , Humans , Kidney/cytology , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Organophosphates/pharmacology , Receptors, Lysosphingolipid/agonists , Receptors, Lysosphingolipid/genetics , Reperfusion Injury/genetics , Signal Transduction , Sphingosine/analogs & derivatives , Sphingosine/pharmacology
2.
Peptides ; 71: 162-9, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26188175

ABSTRACT

Neuropeptide Y (NPY) plays an important role in cardiovascular diseases including stress cardiomyopathy, hypertrophic cardiomyopathy, heart failure, diabetic cardiomyopathy, hypertension, and so on. However, inconsistent results related to the role of NPY in the different types of cardiomyopathies make the exact involvement of the peptide elusive. Considering these effects are known to be involved in energy balance, as the hearts energy producer, the mitochondria, should be investigated, and not only mitochondrial structure but also its potential. Up to now, the impact of NPY on energy metabolism and mitochondria in cultured neonatal rat cardiomyocytes has not been reported. The main objective of our study was to test the role of NPY in cultured neonatal rat cardiomyocytes. After 24-h stimulation of NPY, the ATP content and activity of the cardiomyocytes were determined by Cell Counting Kit-8 and ATP-dependent bioluminescence assay kit, respectively. To further measure these effects, mitochondrial membrane potential was measured by JC-1 staining, the change of mitochondrial structure was detected by transmission electron microscopy, and the levels of PGC-1α (a marker of mitochondrial energy metabolism) mRNA and protein expression were determined by real-time PCR and Western blotting, respectively. The results showed that after 24-h stimulation of NPY, ATP content and activity in the cardiomyocytes were decreased. Moreover, cardiomyocyte mitochondria were changed in morphology. Further, a decline of mitochondrial membrane potential was induced in a dose-dependent manner and the levels of PGC-1α mRNA and protein expression were up-regulated after being treated by different dose of NPY. The results indicate that energy metabolism is suppressed, mitochondrial structure and membrane potential damaged, and PGC-α is changed in cultured neonatal rat cardiomyocytes after being treated by NPY.


Subject(s)
Energy Metabolism/drug effects , Mitochondria, Heart/metabolism , Myocytes, Cardiac/metabolism , Neuropeptide Y/toxicity , Animals , Cells, Cultured , Gene Expression Regulation/drug effects , Mitochondria, Heart/pathology , Myocytes, Cardiac/pathology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Rats , Transcription Factors/biosynthesis
3.
J Forensic Leg Med ; 30: 25-8, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25623191

ABSTRACT

The compound crossbow can be used to eject syringe-like dart loaded with poisonous solution. Succinylcholine (Sch) is a short-acting neuromuscular blocker medically used to achieve complete relaxation of muscle for a good intubation condition. Without the help of an artificial respirator, intramuscular injection of a large dose of Sch can paralyze the respiratory muscle and result in the receiver's death. In this paper, we present the homicide case of a young male killed by Sch from a syringe-like dart ejected by a compound crossbow. The subcutaneous and muscular hemorrhages observed around the entry were more severe than that caused by a medical injection. Additionally, other autopsy results showed the external appearance of a pinhole, general asphyxia signs and pathological findings which were not characteristic. The discovery of a syringe-like dart at the scene is the critical clue and reason for analyzing for Sch, which is commonly used to load syringe-like dart to paralyze and steal dog in the countryside of China.


Subject(s)
Homicide , Neuromuscular Depolarizing Agents/pharmacology , Succinylcholine/pharmacology , Adult , Cause of Death , Forensic Pathology , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...