Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Digit Med ; 7(1): 195, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039248

ABSTRACT

Explainable artificial intelligence (XAI) has experienced a vast increase in recognition over the last few years. While the technical developments are manifold, less focus has been placed on the clinical applicability and usability of systems. Moreover, not much attention has been given to XAI systems that can handle multimodal and longitudinal data, which we postulate are important features in many clinical workflows. In this study, we review, from a clinical perspective, the current state of XAI for multimodal and longitudinal datasets and highlight the challenges thereof. Additionally, we propose the XAI orchestrator, an instance that aims to help clinicians with the synopsis of multimodal and longitudinal data, the resulting AI predictions, and the corresponding explainability output. We propose several desirable properties of the XAI orchestrator, such as being adaptive, hierarchical, interactive, and uncertainty-aware.

2.
BMVC ; 20232023 Nov.
Article in English | MEDLINE | ID: mdl-38813080

ABSTRACT

Self-supervised learning (SSL) approaches have recently shown substantial success in learning visual representations from unannotated images. Compared with photographic images, medical images acquired with the same imaging protocol exhibit high consistency in anatomy. To exploit this anatomical consistency, this paper introduces a novel SSL approach, called PEAC (patch embedding of anatomical consistency), for medical image analysis. Specifically, in this paper, we propose to learn global and local consistencies via stable grid-based matching, transfer pre-trained PEAC models to diverse downstream tasks, and extensively demonstrate that (1) PEAC achieves significantly better performance than the existing state-of-the-art fully/self-supervised methods, and (2) PEAC captures the anatomical structure consistency across views of the same patient and across patients of different genders, weights, and healthy statuses, which enhances the interpretability of our method for medical image analysis. All code and pretrained models are available at GitHub.com/JLiangLab/PEAC.

3.
PeerJ ; 9: e11451, 2021.
Article in English | MEDLINE | ID: mdl-34046262

ABSTRACT

Artificial intelligence has been emerging as an increasingly important aspect of our daily lives and is widely applied in medical science. One major application of artificial intelligence in medical science is medical imaging. As a major component of artificial intelligence, many machine learning models are applied in medical diagnosis and treatment with the advancement of technology and medical imaging facilities. The popularity of convolutional neural network in dental, oral and craniofacial imaging is heightening, as it has been continually applied to a broader spectrum of scientific studies. Our manuscript reviews the fundamental principles and rationales behind machine learning, and summarizes its research progress and its recent applications specifically in dental, oral and craniofacial imaging. It also reviews the problems that remain to be resolved and evaluates the prospect of the future development of this field of scientific study.

SELECTION OF CITATIONS
SEARCH DETAIL
...