Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 294: 133714, 2022 May.
Article in English | MEDLINE | ID: mdl-35065175

ABSTRACT

Health risk of F in soil is of special concern due to the continuously elevated concentration of F in soil. However, there is still a dearth of risk assessments of F in soil based on in-vitro bioaccessibility posed by multiple exposure routes. Herein, the oral, inhalation, and dermal bioaccessibility of F in soil was firstly obtained by adapting and combining in-vitro methods, which then was introduced to remedy an information gap of a comprehensive risk of F in soil posed by a multi-exposure pathway. Combined in-vitro tests indicate the oral, inhalation, and dermal bioaccessibility of F was 13.15 ± 2.63%, 16.55 ± 2.63%, and 1.27 ± 0.73%, respectively. Plasma yielded a detoxic potential for the absorbed F after digesting in small intestine, while effects of enzymes, sweat, and food on the oral bioaccessibility of F were insignificant. Different with metals, the major dissolving phase of F was the interstitial fluid in the deep lung instead of in the alveolar macrophages intracellular environment. A potentially major release of F in the exocrine sweat was noted than in the apocrine sweat. Risk assessments based on the daily exposure incorporated with the in-vitro bioaccessibility suggested that compared with inhalation and dermal contact, oral ingestion was the main exposure route of F in soil to human. Present findings provide insights into the bioaccessibility and health risk of F in soil by multiple exposure routes, which are crucial for the risk control of F contamination in soil.


Subject(s)
Metals, Heavy , Soil Pollutants , Biological Availability , Environmental Monitoring/methods , Fluorine , Humans , Metals, Heavy/analysis , Phosphorus , Risk Assessment/methods , Soil , Soil Pollutants/analysis
2.
Environ Res ; 184: 109300, 2020 05.
Article in English | MEDLINE | ID: mdl-32192987

ABSTRACT

Soils in large areas of China are enriched in fluorine (F). The present study analyzed F concentrations in cultivated soil, water, chemical fertilizer, and human hair, and metal concentrations in soils from an endemic fluorosis area in Southwest, China. In order to reveal the effects of industry on F concentration in the environment, 3 towns mainly with agriculture production and another 3 towns with developed phosphorus chemical industry in a same city were selected for sample collection. The total F concentrations of the 277 surface agricultural soil samples were 378.79-1576.13 µg g-1, and F concentrations of nearly 95% of the soil samples were higher than the Chinese average topsoil F concentration (480 µg g-1). Only a small fraction (0.75%) of total F was water soluble. The average total F, water soluble F, Ca, Cr, Fe, K, Mn, Rb, and Sr concentrations in soil samples from towns with intensive industry were higher than those from towns mainly with agriculture. Significant correlations were found between soil pH with total F (p < 0.01) and with water soluble F concentration (p < 0.1). Low F concentrations (<0.5 mg L-1) were found in irrigation water, well water and tap water in a town where the industry is dense. The phosphorus fertilizer and compound fertilizer had hundreds of times of contribution to soil F increment than the nitrogen fertilizer and potassium fertilizer. Nearly half percent of F in the human hair samples was of exogenic origin. Based on soil ingestion pathway, the health risk for adults exposure to F in soils was acceptable, however, F may pose possible health risks to children in high F concentration areas.


Subject(s)
Fluorine , Soil Pollutants , Adult , Agriculture , Child , China , Fertilizers/analysis , Fluorine/analysis , Fluorine/toxicity , Humans , Soil , Soil Pollutants/analysis
3.
Ecotoxicol Environ Saf ; 195: 110463, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32182531

ABSTRACT

Microbial treatment for vanadium contamination of soils is a favorable and environment-friendly method. However, information of the resistant mechanism of the strains in soils to vanadium, especially to tetravalent vanadium [vanadium(IV)], is still limited. Herein, potential of the vanadium(IV) biosorption and biotransformation of the strains (4K1, 4K2, 4K3 and 4K4) which were capable of tolerating vanadium(IV) was determined. For biosorption, the bioadsorption and the bioabsorption of vanadium(IV) occur on the bacterial cell wall and within the cell, respectively, were taken into consideration. Comparison of the vanadium(IV) adsorbed on the bacterial cell walls and remained in the cells after sorption indicated the major bacterial vanadium(IV) sorption role of the bioadsorption which was at least one order of magnitude higher than the bioabsorption amount. Isotherm study using various isotherm models revealed a monolayer and a multilayer vanadium(IV) biosorption by 4K2 and the others (4K1, 4K3 and 4K4), respectively. Higher biosorption was observed in acidic conditions than in alkaline conditions, and the maximum biosorption was 2.41, 9.35, 7.76 and 8.44 mg g-1 observed at pH 6 for 4K1, at pH 3 for 4K2, and at pH 4 for 4K3 and 4K4, respectively. At the present experimental range of the initial vanadium(IV) concentration, optimal biosorption capacity of the bacteria was observed at the vanadium(IV) level of 100-250 mg L-1. Different biotransformation level of vanadium(IV) in soils by the stains was observed during a 28-d pot incubation of the soils mixed with the strains, which can be attributed to the discrepancy of both soil properties and bacterial species. Present study can help to fill up the gaps of the insufficient knowledge of the vanadium(IV) resistant mechanism of the strains in soils.


Subject(s)
Bacteria/metabolism , Soil Pollutants/metabolism , Vanadium/metabolism , Adsorption , Bacteria/drug effects , Bacteria/isolation & purification , Biotransformation , Ferrosoferric Oxide , Hydrogen-Ion Concentration , Mining , Soil/chemistry , Soil Microbiology , Soil Pollutants/toxicity , Titanium , Vanadium/toxicity
4.
Environ Sci Pollut Res Int ; 27(15): 17910-17922, 2020 May.
Article in English | MEDLINE | ID: mdl-32166686

ABSTRACT

Vanadium (V) pollution in soil has been widely noted, while knowledge about the effect of soil colloid on migration of V is scarce. Batch adsorption-desorption and transportation of the colloid-adsorbed V in columns packed with quartz sand under various environment conditions were carried out to explore the retention and transportation of V by colloidal kaolinite. Batch adsorption-desorption studies show that the adsorption of V by the colloidal kaolinite was mainly specific adsorption and redox played a limited role in the adsorption process. The maximum adsorption capacity of the colloidal kaolinite was 712.4 mg g-1, and about 5.9-8.7% of the adsorbed V could be desorbed. Both the adsorption-desorption and migration of V with colloidal kaolinite were highly ambient condition dependent. The column studies show that V was highly mobile in the saturated porous media. An easier transfer of V with an increase in pH, IS, and velocity of flow was noted. However, the increase of IS lead to the blockage of the colloidal kaolinite transportation. The recovery rate of the colloidal kaolinite at pH 7 and 9 was 2.0 and 2.1 times that at pH 5, respectively. The migration of colloidal-adsorbed V in sand column preceded that of V ion, but more colloidal-bound V than V ion remained in the column. Lack of consideration of the combination and co-transportation of V and colloidal kaolinite will lead to an overestimation of the risk of V to deeper soil profiles and groundwater. Graphical abstract.


Subject(s)
Kaolin , Vanadium , Adsorption , Colloids , Soil
5.
Ecotoxicol Environ Saf ; 190: 110087, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31869720

ABSTRACT

Understanding the interactions between humic acid colloid (HAC) and vanadium (V) in soils is of great importance in forecasting the behaviors and fates of V in the soil and groundwater systems. This study investigated the characteristics and factors that affect V adsorption-desorption by the HAC; meanwhile, we also explored the co-transport of the HAC and V in a saturated porous media. Scanning Electronic Microscopy micrographs showed the variation of morphological features on the surface of the HAC before and after V adsorption. Fourier transform infrared spectroscopy spectra revealed that the presence of hydroxyl, carboxyl, carbonyl, carbon-carbon double bond, amino, and aromatic ring on the HAC participated in V adsorption. The adsorption isotherms were well described by the Langmuir model, and the adsorption kinetics of the HAC was better described by the pseudo-first-order kinetic models. The adsorption-desorption was strongly dependent on the initial V concentration, solution pH, and temperature. The maximum adsorption amount was 861.17 mg g-1 by 200 mg L-1 HAC at the initial V concentration of 500 mg L-1, and the corresponding desorption amount was 15.13 mg g-1. These results showed that the HAC had high fixation capacity of V in soil. In addition, the HAC sped up the mobility of V; however, it decreased mass of migration of V in the saturated quartz sand column. These results are expected to provide insight into the potential impact of HAC on geochemical behaviours of V in vulnerable ecosystems.


Subject(s)
Soil Pollutants/chemistry , Vanadium/chemistry , Adsorption , Colloids/chemistry , Ecosystem , Groundwater , Humic Substances , Hydrogen-Ion Concentration , Kinetics , Porosity , Quartz , Soil/chemistry , Soil Pollutants/analysis , Spectroscopy, Fourier Transform Infrared , Symporters
SELECTION OF CITATIONS
SEARCH DETAIL
...