Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 205: 116642, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38941803

ABSTRACT

Since the Industrial Revolution, increasing atmospheric CO2 concentrations have had a substantial negative impact influence on coastal ecosystems because of direct effects including ocean acidification and indirect effects such as extreme rainfall events. Using a two-factor crossover indoor simulation experiment, this study examined the combined effects of acidification and hyposaline stress on Thalassia hemprichii. Seawater acidification increased the photosynthetic pigment content of T. hemprichii leaves and promoted seagrass growth rate. Hyposaline stress slowed down seagrass growth and had an impact on the osmotic potential and osmoregulatory substance content of seagrass leaves. Acidification and salinity reduction had significant interaction effects on the photosynthesis rate, photosynthetic pigment content, chlorophyll fluorescence parameters, and osmotic potential of T. hemprichii, but not on the growth rate. Overall, these findings have shown that the hyposaline stress inhibitory effect on the T. hemprichii physiological performance and growth may be reduced by acidification.

SELECTION OF CITATIONS
SEARCH DETAIL
...