Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Psychiatry ; 15: 1423008, 2024.
Article in English | MEDLINE | ID: mdl-38962058

ABSTRACT

Introduction: Chronic schizophrenia has a course of 5 years or more and has a widespread abnormalities in brain functional connectivity. This study aimed to find characteristic functional and structural changes in a long illness duration chronic schizophrenia (10 years or more). Methods: Thirty-six patients with a long illness duration chronic schizophrenia and 38 healthy controls were analyzed by independent component analysis of brain network functional connectivity. Correlation analysis with clinical duration was performed on six resting state networks: auditory network, default mode network, dorsal attention network, fronto-parietal network, somatomotor network, and visual network. Results: The differences in the resting state network between the two groups revealed that patients exhibited enhanced inter-network connections between default mode network and multiple brain networks, while the inter-network connections between somatomotor network, default mode network and visual network were reduced. In patients, functional connectivity of Cuneus_L was negatively correlated with illness duration. Furthermore, receiver operating characteristic curve of functional connectivity showed that changes in Thalamus_L, Rectus_L, Frontal_Mid_R, and Cerebelum_9_L may indicate a longer illness duration chronic schizophrenia. Discussion: In our study, we also confirmed that the course of disease is significantly associated with specific brain regions, and the changes in specific brain regions may indicate that chronic schizophrenia has a course of 10 years or more.

2.
Front Cell Neurosci ; 18: 1292969, 2024.
Article in English | MEDLINE | ID: mdl-38628398

ABSTRACT

During the development of neural circuits, axons are guided by a variety of molecular cues to navigate through the brain and establish precise connections with correct partners at the right time and place. Many axon guidance cues have been identified and they play pleiotropic roles in not only axon guidance but also axon fasciculation, axon pruning, and synaptogenesis as well as cell migration, angiogenesis, and bone formation. In search of receptors for Sema3E in axon guidance, we unexpectedly found that Plexin B3 is highly expressed in retinal ganglion cells of zebrafish embryos when retinal axons are crossing the midline to form the chiasm. Plexin B3 has been characterized to be related to neurodevelopmental disorders. However, the investigation of its pathological mechanisms is hampered by the lack of appropriate animal model. We provide evidence that Plexin B3 is critical for axon guidance in vivo. Plexin B3 might function as a receptor for Sema3E while Neuropilin1 could be a co-receptor. The intracellular domain of Plexin B3 is required for Semaphorin signaling transduction. Our data suggest that zebrafish could be an ideal animal model for investigating the role and mechanisms of Sema3E and Plexin B3 in vivo.

SELECTION OF CITATIONS
SEARCH DETAIL
...