Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 399: 130550, 2024 May.
Article in English | MEDLINE | ID: mdl-38460562

ABSTRACT

Sunlight illumination has the potential to control the stability and sustainability of dynamic membrane (DM) systems. In this study, an up-flow anaerobic sludge blanket (UASB) reactor was combined with DM under different illumination positions (direct, indirect and no illumination) to treat wastewater. Results indicated that the UASB achieved a COD removal up to 87.05 % with an average methane production of 0.28 L/d. Following treatment by the UASB, it was found that under illumination, the removal of organic substances by DM exhibited poor performance due to algal proliferation. However, the DM systems demonstrated efficient removal of ammonia nitrogen, ranging from 96.21 % to 97.67 % after stabilization. Total phosphorus removal was 45.72 %, and membrane flux remained stable when directly illuminated. Conversely, the DM system subjected to indirect illumination showed unstable membrane flux and severe fouling resistance. These findings offer valuable insights into optimizing illumination positions in DM systems under anaerobic conditions.


Subject(s)
Waste Disposal, Fluid , Water Purification , Waste Disposal, Fluid/methods , Anaerobiosis , Lighting , Methane , Bioreactors , Sewage
2.
Chemosphere ; 339: 139590, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37480959

ABSTRACT

This study aimed at investigating the removal performance of the gravity-driven membrane (GDM) system in treating the heavy metals-containing secondary effluent, as well as evaluating the respective roles of Fe and Mn addition on the removal of heavy metals. GDM process with the formation of biocake layer exerted effective removals of Cr, Pb and Cd, with an average removal efficiency of 98%, 95% and 40%, respectively, however, after removing the biocake layer, the removal efficiencies of Cr, Pb and Cd reduced to 59%, 85% and 19%, respectively, indicating that the biocake layer played a fundamental role in removing heavy metals. With the assistance of Fe, the removal efficiency of heavy metals increased, and exhibited a positive response to the Fe dosage, due to the adsorption by the freshly generated iron oxides. On the contrary, the Mn involvement would result in the reduction of Cd removal due to the competitive adsorption of residual dissolved Mn2+ and Cd. Furthermore, the addition of a high dosage of Fe increased the diversity of eukaryotic communities and facilitated the elimination of heavy metals, however, the involvement of Mn would lead to a reduction in microbial diversity, resulting in a decrease of heavy metal removal efficiency. These findings are expected to develop new tactics to enhance heavy metal removal and promote widespread application of GDM technology in the fields of deep treatment of heavy metals-containing wastewater and reclamation of secondary effluent.


Subject(s)
Cadmium , Metals, Heavy , Lead , Metals, Heavy/analysis , Wastewater , Adsorption
SELECTION OF CITATIONS
SEARCH DETAIL
...