Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Poult Sci ; 103(3): 103392, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38194829

ABSTRACT

Excess abdominal fat reduces carcass yield and feed conversion ratio, thereby resulting in significant economic losses in the poultry industry. Our previous study demonstrated that dietary addition of folic acid reduced fat deposition and changed gut microbiota and short-chain fatty acid. However, whether folic acid regulating abdominal fat deposition was mediated by gut microbiota was unclear. A total of 210 one-day-old broiler chickens were divided into 3 groups including the control (CON), folic acid (FA), and fecal microbiota transplantation (FMT) groups. From 14th day, broiler chickens in CON and FA groups were given perfusion administration with 1 mL diluent daily, while 1 mL fecal microbiota transplantation suspension from FA group prepared before was perfusion in FMT group receiving control diets. The result showed that abdominal fat percentage was significantly lower in FA and FMT groups when compared with CON group (P < 0.05). Morphology analysis revealed that the villus height of jejunum and ileum were significantly higher in FMT group (P < 0.05), and the villus height of jejunum was also significantly higher in FA group (P < 0.05), while the diameter and cross-sectional area (CSA) of adipocytes were significantly decreased in FA and FMT groups when compared with CON group (P < 0.05). Western blot results indicated that the expression levels of FOXO1 and PLIN1 in FMT group were significantly increased (P < 0.05), whereas the expression levels of PPARγ, C/EBPα, and FABP4 were significantly decreased (P < 0.05). Additionally, the Chao1, Observed-species, Shannon and Simpson indexes in FA and FMT groups were significantly higher (P < 0.05), but the microbiota were similar between FMT and FA groups (P < 0.05). LEfSe analysis determined that Lactobacillus, Clostridium and Dehalobacterium were found to be predominant in FA group, while Oscillospira, Shigella, and Streptococcus were the dominant microflora in FMT group. Furthermore, these cecal microbiota were mostly involved in infectious disease, cellular community prokaryotes, cell motility and signal transduction in FA group (P < 0.05), whereas functional capacities involved in signal transduction, cell motility, infectious disease and environment adaptation were enriched significantly of cecal microbiota in FMT group (P < 0.05). In summary, both fecal microbiota transplantation from the broiler chickens of dietary added folic acid and dietary folic acid addition effectively reduced abdominal fat deposition, indicating that the regulatory effect of folic acid on abdominal fat deposition was mediated partly by gut microbiota in broiler chickens.


Subject(s)
Communicable Diseases , Gastrointestinal Microbiome , Animals , Folic Acid/pharmacology , Fecal Microbiota Transplantation/veterinary , Chickens/physiology , Communicable Diseases/veterinary , Abdominal Fat
2.
J Pharm Anal ; 13(6): 673-682, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37440905

ABSTRACT

Glucose transporter 1 (GLUT1) overexpression in tumor cells is a potential target for drug therapy, but few studies have reported screening GLUT1 inhibitors from natural or synthetic compounds. With current analysis techniques, it is difficult to accurately monitor the GLUT1 inhibitory effect of drug molecules in real-time. We developed a cell membrane-based glucose sensor (CMGS) that integrated a hydrogel electrode with tumor cell membranes to monitor GLUT1 transmembrane transport and screen for GLUT1 inhibitors in traditional Chinese medicines (TCMs). CMGS is compatible with cell membranes of various origins, including different types of tumors and cell lines with GLUT1 expression knocked down by small interfering RNA or small molecules. Based on CMGS continuous monitoring technique, we investigated the glucose transport kinetics of cell membranes with varying levels of GLUT1 expression. We used CMGS to determine the GLUT1-inhibitory effects of drug monomers with similar structures from Scutellaria baicalensis and catechins families. Results were consistent with those of the cellular glucose uptake test and molecular-docking simulation. CMGS could accurately screen drug molecules in TCMs that inhibit GLUT1, providing a new strategy for studying transmembrane protein-receptor interactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...