Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Water Res ; 209: 117895, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34864344

ABSTRACT

Bioretention systems are environmentally friendly measures to control the amount of water and pollutants in urban stormwater runoff, and their treatment performance for inorganic N strongly depends on various microbial processes. However, microbial responses to variations of N mass reduction in bioretention systems are complex and poorly understood, which is not conducive to management designs. In the present study, a series of bioretention columns were established to monitor their fate performance for inorganic N (NH4+and NO3-) by using different configurations and by dosing with simulated stormwater events. The results showed that NH4+ was efficiently oxidized to NO3-, mainly by ammonia- and nitrite-oxidizing bacteria in the oxic media, regardless of the configurations of the bioretention systems or stormwater conditions. In contrast, NO3- removal pathways varied greatly in different columns. The presence of vegetation efficiently improved NO3-mass reduction through root assimilation and enhancement of microbial NO3- reduction in the rhizosphere. The construction of an organic-rich saturation zone can make the redox potential too low for heterotrophic denitrification to occur, so as to ensure high NO3- mass reduction mainly via stimulating chemolithotrophic NO3- reduction coupled with oxidation of reductive sulfur compounds derived from the bio-reduction of sulfate. In contrast, in the organic-poor saturation zone, multiple oligotrophic NO3- reduction pathways may be responsible for the high NO3- mass reduction. These findings highlight the necessity of considering the variation of N bio-transformation pathways for inorganic N removal in the configuration of bioretention systems.

SELECTION OF CITATIONS
SEARCH DETAIL