Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(5): 519-525, 2024 May 10.
Article in Chinese | MEDLINE | ID: mdl-38684294

ABSTRACT

OBJECTIVE: To carry out cytogenetic and molecular genetic analysis for two infertile patients carrying rare small supernumerary marker chromosomes (sSMC). METHODS: Two infertile patients who received reproductive and genetic counseling at CITIC Xiangya Reproductive and Genetic Hospital on October 31, 2018 and May 10, 2021, respectively were selected as the study subjects. The origin of sSMCs was determined by conventional G banding, fluorescence in situ hybridization (FISH) and copy number variation sequencing (CNV-seq). Microdissection combined with high-throughput whole genome sequencing (MicroSeq) was carried out to determine the fragment size and genomic information of their sSMCs. RESULTS: For patient 1, G-banded karyotyping and FISH revealed that he has a karyotype of mos47,XY,del(16)(p10p12),+mar[65]/46,XY,del(16)(p10p12)[6]/48,XY,del(16)(p10p12),+2mar[3].ish mar(Tel 16p-,Tel 16q-,CEP 16-,WCP 16+). CNV analysis has yielded a result of arr[GRCh37]16p12.1p11.2(24999364_33597595)×1[0.25]. MicroSeq revealed that his sSMC has contained the region of chromosome 16 between 24979733 and 34023115 (GRCh37). For patient 2, karyotyping and reverse FISH revealed that she has a karyotype of mos 47,XX,+mar[37]/46,XX[23].rev ish CEN5, and CNV analysis has yielded a result of seq[GRCh37]dup(5)(p12q11.2)chr5:g(45120001_56000000)dup[0.8]. MicroSeq results revealed that her sSMC has contained the region of chromosome 5 between 45132364 and 55967870(GRCh37). After genetic counseling, both couples had opted in vitro fertilization (IVF) treatment and preimplantation genetic testing (PGT). CONCLUSION: For individuals harboring sSMCs, it is vital to delineate the origin and structural characteristics of the sSMCs for their genetic counseling and reproductive guidance. Preimplantation genetic testing after microdissection combined with high-throughput whole genome sequencing (MicroSeq-PGT) can provide an alternative treatment for carrier couples with a high genetic risk.


Subject(s)
In Situ Hybridization, Fluorescence , Karyotyping , Humans , Male , Female , Adult , Chromosome Aberrations , Genetic Testing/methods , Reproductive Techniques, Assisted , DNA Copy Number Variations , Infertility/genetics , Genetic Markers , Chromosome Banding , Genetic Counseling
2.
F S Rep ; 5(1): 55-62, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38524217

ABSTRACT

Objective: To evaluate the clinical outcomes in the carriers of insertional translocation (IT). Design: Retrospective case series. Setting: University-affiliated reproductive medical center. Patients: Twenty-three couples with ITs. Intervention: No direct interventions were involved; however, this study included patients who underwent preimplantation genetic testing for structural chromosomal rearrangements (PGT-SR). Main Outcome Measure: Outcome of preimplantation genetic testing for structural chromosomal rearrangements and percentage of blastocysts available for transfer. Results: Among 23 IT carriers, 15 were simple interchromosome ITs (type A), 3 were intrachromosome IT carriers (type B), and 5 were interchromosome IT carriers combined with other translocations (type C). A total of 190 blastocysts from 30 cycles were biopsied, 187 embryos were tested successfully, and only 57 blastocysts (30.5%) from 21 patients were available for transfer (normal or balanced). The unbalanced rearrangement rate of type C was 79.2% (42/53), and the proportion of type A was 50.0% (57/114), which was significantly higher than that of type B (5%, 1/20). In type A, the probability of embryos harboring unbalanced rearrangement in female carriers was 56.0% (51/91), which was higher than that in male carriers (26.1%, 6/23). Furthermore, the haploid autosomal length value of the inserted fragment was correlated linearly with the incidence of abnormal embryos. In type A gametes, most gametes produced by 2:2 separation without crossover, and no 3:1 separation gamete was observed. Conclusions: The chance of identifying normal or balanced and mosaic blastocysts per mature oocytes in patients with ITs are 16.6% (67/404). Greater IT complexity results in fewer transferable embryos. For simple interchromosome ITs, female carriers and those with higher haploid autosomal length values have a higher risk of producing embryos with unbalanced rearrangement.

3.
Hum Reprod ; 39(4): 849-855, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38420683

ABSTRACT

Individuals with 46,XX/XY chimerism can display a wide range of characteristics, varying from hermaphroditism to complete male or female, and can display sex chromosome chimerism in multiple tissues, including the gonads. The gonadal tissues of females contain both granulosa and germ cells. However, the specific sex chromosome composition of the granulosa and germ cells in 46,XX/XY chimeric female is currently unknown. Here, we reported a 30-year-old woman with secondary infertility who displayed a 46,XX/46,XY chimerism in the peripheral blood. FISH testing revealed varying degrees of XX/XY chimerism in multiple tissues of the female patient. Subsequently, the patient underwent preimplantation genetic testing (PGT) treatment, and 26 oocytes were retrieved. From the twenty-four biopsied mature oocytes, a total of 23 first polar bodies (PBs) and 10 second PBs were obtained. These PBs and two immature metaphase I (MI) oocytes only displayed X chromosome signals with no presence of the Y, suggesting that all oocytes in this chimeric female were of XX germ cell origin. On the other hand, granulosa cells obtained from individual follicles exhibited varied proportions of XX/XY cell types, and six follicles possessed 100% XX or XY granulosa cells. A total of 24 oocytes were successfully fertilized, and 12 developed into blastocysts, where 5 being XY and 5 were XX. Two blastocysts were transferred with one originating from an oocyte aspirated from a follicle containing 100% XY granulosa cells. This resulted in a twin pregnancy. Subsequent prenatal diagnosis confirmed normal male and female karyotypes. Ultimately, healthy boy-girl twins were delivered at full term. In summary, this 46,XX/XY chimerism with XX germ cells presented complete female, suggesting that germ cells may exert a significant influence on the sexual determination of an individual, which provide valuable insights into the intricate processes associated with sexual development and reproduction.


Subject(s)
Chimerism , Germ Cells , Gonadal Dysgenesis, 46,XY , Adult , Female , Humans , Male , Pregnancy , Gonads , Oocytes , X Chromosome
4.
J Assist Reprod Genet ; 41(3): 739-750, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38263474

ABSTRACT

PURPOSE: The preimplantation genetic testing for aneuploidy (PGT-A) platform is not currently available for small copy-number variants (CNVs), especially those < 1 Mb. Through strategies used in PGT for monogenic disease (PGT-M), this study intended to perform PGT for families with small pathogenic CNVs. METHODS: Couples who carried small pathogenic CNVs and underwent PGT at the Reproductive and Genetic Hospital of CITIC-Xiangya (Hunan, China) between November 2019 and April 2023 were included in this study. Haplotype analysis was performed through two platforms (targeted sequencing and whole-genome arrays) to identify the unaffected embryos, which were subjected to transplantation. Prenatal diagnosis using amniotic fluid was performed during 18-20 weeks of pregnancy. RESULTS: PGT was successfully performed for 20 small CNVs (15 microdeletions and 5 microduplications) in 20 families. These CNVs distributed on chromosomes 1, 2, 6, 7, 13, 15, 16, and X with sizes ranging from 57 to 2120 kb. Three haplotyping-based PGT-M strategies were applied. A total of 89 embryos were identified in 25 PGT cycles for the 20 families. The diagnostic yield was 98.9% (88/89). Nineteen transfers were performed for 17 women, resulting in a 78.9% (15/19) clinical pregnancy rate after each transplantation. Of the nine women who had healthy babies, eight accepted prenatal diagnosis and the results showed no related pathogenic CNVs. CONCLUSION: Our results show that the extended haplotyping-based PGT-M strategy application for small pathogenic CNVs compensated for the insufficient resolution of PGT-A. These three PGT-M strategies could be applied to couples with small pathogenic CNVs.


Subject(s)
Abortion, Spontaneous , Preimplantation Diagnosis , Pregnancy , Humans , Female , Preimplantation Diagnosis/methods , Genetic Testing/methods , Pregnancy Rate , Abortion, Spontaneous/genetics , Live Birth , Aneuploidy
5.
J Assist Reprod Genet ; 41(1): 147-159, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37993578

ABSTRACT

PURPOSE: To report genetic characteristics and associated risk of chromosomal breaks due to chromosomal rearrangements in large samples. METHODS: MicroSeq, a technique that combines chromosome microdissection and next-generation sequencing, was used to identify chromosomal breakpoints. Long-range PCR and Sanger sequencing were used to precisely characterize 100 breakpoints in 50 ABCR carriers. RESULTS: In addition to the recurrent regions of balanced rearrangement breaks in 8q24.13, 11q11.23, and 22q11.21 that had been documented, we have discovered a 10-Mb region of 12q24.13-q24.3 that could potentially be a sparse region of balanced rearrangement breaks. We found that 898 breakpoints caused gene disruption and a total of 188 breakpoints interrupted genes recorded in OMIM. The percentage of breakpoints that disrupted autosomal dominant genes recorded in OMIM was 25.53% (48/188). Fifty-four of the precisely characterized breakpoints had 1-8-bp microhomologous sequences. CONCLUSION: Our findings provide a reference for the evaluation of the pathogenicity of mutations in related genes that cause protein truncation in clinical practice. According to the characteristics of breakpoints, non-homologous end joining and microhomology-mediated break-induced replication may be the main mechanism for ABCRs formation.


Subject(s)
Chromosome Aberrations , Translocation, Genetic , Humans , Translocation, Genetic/genetics , Chromosome Breakpoints , Mutation , Gene Rearrangement/genetics
6.
J Assist Reprod Genet ; 40(8): 1995-2002, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37338749

ABSTRACT

PURPOSE: To analyze factors affecting segregation and ploidy results from Robertsonian carriers, and determine chromosomes involved impact chromosome stability during meiosis and mitosis. METHODS: This retrospective study include 928 oocyte retrieval cycles from 763 couples with Robertsonian translocations undergoing preimplantation genetic testing for structural rearrangements (PGT-SR) using next-generation sequencing (NGS) between December 2012 and June 2020.The segregation patterns of the trivalent of 3423 blastocysts were analyzed according to the carrier's sex and age. A total of 1492 couples who received preimplantation genetic testing for aneuploidy (PGT-A) were included as the control group and matched according to maternal age and testing time stage. RESULTS: A total of 1728 (50.5%) normal/balanced embryos were identified from 3423 embryos diagnosed. The rate of alternate segregation in male Robertsonian translocation carriers was significantly higher than that in female carriers (82.3% vs. 60.0%, P < 0.001). However, the segregation ratio exhibited no difference between young and older carriers. Further, increasing maternal age decreased the proportion of transferable embryo cycle in both female and male carriers. And the ratio of chromosome mosaic from the Robertsonian translocation carrier group was significantly higher than that in the PGT-A control group (1.2% vs. 0.5%, P < 0.01). CONCLUSIONS: The meiotic segregation modes were affected by the carrier sex and were independent of the carrier's age. Advanced maternal age decreased the probability of obtaining a normal/balanced embryo. In additional, the Robertsonian translocation chromosome could increase the possibility of chromosome mosaicism during mitosis in blastocysts.


Subject(s)
Preimplantation Diagnosis , Pregnancy , Male , Female , Humans , Retrospective Studies , Pregnancy Rate , Preimplantation Diagnosis/methods , Translocation, Genetic/genetics , Blastocyst , Genetic Testing
7.
Genet Med ; 24(11): 2285-2295, 2022 11.
Article in English | MEDLINE | ID: mdl-36107168

ABSTRACT

PURPOSE: This study aimed to investigate the spectrum and characteristics of segmental aneuploidies (SAs) of <10 megabase (Mb) length in human preimplantation blastocysts. METHODS: Preimplantation genetic testing for aneuploidy was performed in 15,411 blastocysts from 5171 patients using a validated 1 Mb resolution platform. The characteristics and spectrum of SAs, including the incidence, sizes, type, inheritance pattern, clinical significance, and embryo distribution, were studied. RESULTS: In total, 6.4% of the 15,411 blastocysts carried SAs of >10 Mb, 4.9% of embryos had SAs ranging between 1 to 10 Mb, and 84.3% of 1 to 10 Mb SAs were <5 Mb in size. Inheritance pattern analysis indicated that approximately 63.8% of 1 to 10 Mb SAs were inherited and were predominantly 1 to 3 Mb in size. Furthermore, 18.4% of inherited SAs and 51.9% de novo 1 to 10 Mb SAs were pathogenic or likely pathogenic (P/LP). Different from whole-chromosome aneuploidies, reanalysis indicated that 50% of the de novo 1 to 10 Mb SAs and 70% of the >10 Mb SAs arose from mitotic errors. CONCLUSION: Based on the established platform, 1 to 10 Mb SAs are common in blastocysts and include a subset of P/LP SAs. Inheritance pattern analysis and clinical interpretation based on the American College of Medical Genetics and Genomics/Association for Molecular Pathology guidelines contributed to determine the P/LP SAs.


Subject(s)
Preimplantation Diagnosis , Pregnancy , Female , Humans , Aneuploidy , Blastocyst , Genetic Testing
8.
Reprod Biomed Online ; 45(4): 721-726, 2022 10.
Article in English | MEDLINE | ID: mdl-35989167

ABSTRACT

RESEARCH QUESTION: Do differences exist in euploidy rates in preimplantation genetic testing for aneuploidy (PGT-A) cycles with oral dydrogesterone primed ovarian stimulation protocol or the flexible gonadotropin-releasing hormone (GnRH) antagonist protocol? DESIGN: A retrospective cohort study. Patients received the oral dydrogesterone or the GnRH antagonist in the first PGT-A cycle between November 2017 and May 2019. Propensity matching was used to identify a propensity-matched antagonist group based on age, BMI and AMH with a 1:1 ratio. The primary outcome was the rate of euploid embryos. RESULTS: A total of 780 cycles were included, consisting of 390 cycles receiving dydrogesterone and 390 cycles receiving GnRH antagonist protocol. No significant difference was found in patient baseline and cycle characteristics in the two groups. No statistical difference was found in the number of oocytes retrieved, metaphase II oocytes, embryos biopsied and embryo testing between the two groups. As no biopsy blastocysts formed in some cycles, only 262 cycles in the study group and 263 cycles in the antagonist group received next-generation sequencing testing, respectively. Similar to our overall data, the euploid rate per embryo biopsied was not significantly different. No significant differences were found between the two groups after stratifying by age and controlling for PGT-A testing modality. CONCLUSIONS: Ovulation inhibition by exogenous progestins in ovarian stimulation cycles should, therefore, be considered a valid modality in freeze-all PGT-A cycles, in view of its demonstrated effectiveness and known safety enhancement.


Subject(s)
Dydrogesterone , Preimplantation Diagnosis , Aneuploidy , Female , Fertilization in Vitro/methods , Genetic Testing/methods , Gonadotropin-Releasing Hormone , Hormone Antagonists , Humans , Ovulation Induction/methods , Pregnancy , Preimplantation Diagnosis/methods , Progestins , Retrospective Studies
9.
Front Genet ; 13: 880208, 2022.
Article in English | MEDLINE | ID: mdl-35719400

ABSTRACT

Reciprocal translocations are the most common structural chromosome rearrangements and may be associated with reproductive problems. Therefore, the objective of this study was to analyze factors that can influence meiotic segregation patterns in blastocysts for reciprocal translocation carriers. Segregation patterns of quadrivalents in 10,846 blastocysts from 2,871 preimplantation genetic testing cycles of reciprocal translocation carriers were analyzed. The percentage of normal/balanced blastocysts was 34.3%, and 2:2 segregation was observed in 90.0% of the blastocysts. Increased TAR1 (ratio of translocated segment 1 over the chromosome arm) emerged as an independent protective factor associated with an increase in alternate segregation (p = 0.004). Female sex and involvement of an acrocentric chromosome (Acr-ch) were independent risk factors that reduced alternate segregation proportions (p < 0.001). Notably, a higher TAR1 reduced the proportion of adjacent-1 segregation (p < 0.001); a longer translocated segment and female sex increased the risk of adjacent-2 segregation (p = 0.009 and p < 0.001, respectively). Female sex and involvement of an Acr-ch enhanced the ratio of 3:1 segregation (p < 0.001 and p = 0.012, respectively). In conclusion, autosomal reciprocal translocation carriers have reduced proportions of alternate segregation in blastocysts upon the involvement of an Acr-ch, female sex, and lower TAR1. These results may facilitate more appropriate genetic counseling for couples with autosomal reciprocal translocation regarding their chances of producing normal/balanced blastocysts.

10.
Front Endocrinol (Lausanne) ; 13: 794720, 2022.
Article in English | MEDLINE | ID: mdl-35250858

ABSTRACT

OBJECTIVE: To evaluate whether trophectoderm (TE) biopsy differentially influence the level of serum ß-human chorionic gonadotropin (ß-hCG) with different TE-scored blastocysts transferred in early pregnancy. METHODS: This retrospective cohort study contained 7847 single-blastocyst transfer cycles executed between January 2019 and June 2020, including 2657 preimplantation genetic testing (PGT) cycles and 5190 in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI) cycles. All cycles were classified into biopsy and control groups, and further stratified based on the TE morphological scores into three subgroups: grades A, B, and C for TE scores, respectively. Intra-group and inter-group analyses were performed on serum ß-hCG levels on the 12th day after blastocyst transfer (HCG12), and obstetric and neonatal outcomes. RESULTS: For cycles with a live birth, in grade A TE score subgroups, the HCG12 level did not exhibit statistical significance between the control and biopsy groups after adjustment (769 mIU/mL vs. 753 mIU/mL, P=0.631). In contrast, in grade B and C TE score subgroups, the control group showed a significantly higher level of HCG12 relative to the biopsy group (690 mIU/mL vs. 649 mIU/mL, P=0.001; 586 mIU/mL vs. 509 mIU/mL, P<0.001, respectively). We observed no statistically significant differences in obvious adverse obstetric and neonatal outcomes between the same TE-score subgroups of the biopsy group and control group. CONCLUSIONS: While blastocysts with higher TE grades produced higher serum ß-hCG levels in early pregnancy, TE biopsy might exert a negative impact on serum ß-hCG levels by blastocysts with a grade-B TE score and below. TE biopsy did not increase the risk for adverse obstetric and neonatal outcomes.


Subject(s)
Blastocyst , Embryo Transfer , Biopsy , Chorionic Gonadotropin , Female , Humans , Infant, Newborn , Pregnancy , Retrospective Studies
11.
EMBO Mol Med ; 13(12): e14887, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34779126

ABSTRACT

Early embryonic arrest and fragmentation (EEAF) is a common phenomenon leading to female infertility, but the genetic determinants remain largely unknown. The Moloney sarcoma oncogene (MOS) encodes a serine/threonine kinase that activates the ERK signaling cascade during oocyte maturation in vertebrates. Here, we identified four rare variants of MOS in three infertile female individuals with EEAF that followed a recessive inheritance pattern. These MOS variants encoded proteins that resulted in decreased phosphorylated ERK1/2 level in cells and oocytes, and displayed attenuated rescuing effects on cortical F-actin assembly. Using oocyte-specific Erk1/2 knockout mice, we verified that MOS-ERK signal pathway inactivation in oocytes caused EEAF as human. The RNA sequencing data revealed that maternal mRNA clearance was disrupted in human mature oocytes either with MOS homozygous variant or with U0126 treatment, especially genes relative to mitochondrial function. Mitochondrial dysfunction was observed in oocytes with ERK1/2 deficiency or inactivation. In conclusion, this study not only uncovers biallelic MOS variants causes EEAF but also demonstrates that MOS-ERK signaling pathway drives human oocyte cytoplasmic maturation to prevent EEAF.


Subject(s)
Infertility, Female , Sarcoma , Animals , Female , Humans , Infertility, Female/genetics , Infertility, Female/metabolism , Mice , Mutation , Oncogenes , Oocytes , Sarcoma/genetics , Sarcoma/metabolism
12.
Reprod Biomed Online ; 43(2): 215-222, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34193357

ABSTRACT

RESEARCH QUESTION: What is the incidence of complex mosaic in preimplantation genetic testing (PGT) blastocysts and can it be managed in clinical practice? DESIGN: A retrospective study of PGT cycles conducted between January 2018 and October 2019 at a single centre. Biopsies of blastocysts were collected and analysed by next-generation sequencing (NGS). Complex mosaic blastocysts were defined as those with three or more mosaic chromosomes. The cryopreserved complex mosaic blastocysts underwent a second round of biopsy, NGS analysis and vitrification. The euploid blastocysts identified by the re-biopsy were warmed again for embryo transfer. The main outcomes included the prevalence of the complex mosaic and the ongoing pregnancy rate. RESULTS: The prevalence of the complex mosaic was 2.4% (437/17,979). The prevalence of the complex mosaic was not associated with maternal age and morphological quality. A total of 89 complex mosaic blastocysts underwent re-biopsy and 96.6% (86/89) survived the first warming. For the re-biopsy samples, 61.6% (53/86) were euploid. The poor-quality blastocysts had higher rates of aneuploidy compared with good-quality blastocysts. The survival rate for blastocysts undergoing the second warming was 100% (18/18) and resulted in an ongoing pregnancy rate of 38.9% (7/18) as well as the birth of six healthy infants. CONCLUSION: Re-biopsy may rescue blastocysts with development potential for transfer and improve the cumulative pregnancy rate per stimulation cycle in patients containing complex mosaic blastocysts.


Subject(s)
Blastocyst/pathology , Infertility/diagnosis , Mosaicism , Adult , Biopsy , Blastocyst/metabolism , Chromosome Aberrations/embryology , Chromosome Aberrations/statistics & numerical data , Cryopreservation , Embryo Transfer/statistics & numerical data , Female , High-Throughput Nucleotide Sequencing , Humans , Infertility/epidemiology , Infertility/genetics , Infertility/therapy , Mosaicism/embryology , Mosaicism/statistics & numerical data , Pregnancy , Pregnancy Rate , Preimplantation Diagnosis/statistics & numerical data , Prevalence , Prognosis , Retrospective Studies , Treatment Outcome , Vitrification
13.
Mol Genet Genomic Med ; 9(5): e1662, 2021 05.
Article in English | MEDLINE | ID: mdl-33942572

ABSTRACT

BACKGROUND: Mosaicism poses challenges for genetic counseling and preimplantation genetic testing for monogenic disorders (PGT-M). NGS-based PGT-M has been extensively used to prevent the transmission of monogenic defects, but it has not been evaluated in the application of PGT-M resulting from mosaicism. METHODS: Four women suspected of mosaicism were confirmed by ultra-deep sequencing. Blastocyst trophectoderm cells and polar bodies were collected for whole genome amplification, followed by pathogenic variants detection and haplotype analysis based on NGS. The embryos free of the monogenic disorders were transplantable. RESULTS: Ultra-deep sequencing confirmed that the four women harbored somatic mosaic variants, with the proportion of variant cells at 1.12%, 9.0%, 27.60%, and 91.03%, respectively. A total of 25 blastocysts were biopsied and detected during four PGT cycles and 5 polar bodies were involved in one cycle additionally. For each couple, a wild-type embryo was successfully transplanted and confirmed by prenatal diagnosis, resulting in the birth of four healthy infants. CONCLUSIONS: Mosaic variants could be effectively evaluated via ultra-deep sequencing, and could be prevented the transmission by PGT. Our work suggested that an NGS-based PGT approach, involving pathogenic variants detection combined with haplotype analysis, is crucial for accurate PGT-M with mosaicism.


Subject(s)
Genetic Diseases, Inborn/genetics , Genetic Testing/methods , Mosaicism , Preimplantation Diagnosis/methods , Adult , Blastocyst/metabolism , Female , Genetic Diseases, Inborn/diagnosis , High-Throughput Nucleotide Sequencing/methods , Humans , Male , Mutation , Sequence Analysis, DNA/methods
14.
Reprod Biomed Online ; 43(1): 73-80, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33931368

ABSTRACT

RESEARCH QUESTION: What is the genetic cause of multiple congenital disabilities in a girl with a maternal balanced X-autosome translocation [t(X-A)]? Is preimplantation genetic testing (PGT), to distinguish non-carrier from euploid/balanced embryos and prioritize transfer, an effective and applicable strategy for couples with t(X-A)? DESIGN: Karyotype analysis, whole-exome sequencing and X inactivation analysis were performed for a girl with congenital cardiac anomalies, language impairment and mild neurodevelopmental delay. PGT based on next-generation sequencing after microdissecting junction region (MicroSeq) to distinguish non-carrier and carrier embryos was used in three couples with a female t(X-A) carrier (cases 1-3). RESULTS: The girl carried a maternal balanced translocation 46,X,t(X;1)(q28;p31.1). Whole-exome sequencing revealed no monogenic mutation related to her phenotype, but she carried a rare skewed inactivation of the translocated X chromosome that spread to the adjacent interstitial 1p segment, contrary to her mother. All translocation breakpoints in cases 1-3 were successfully identified and each couple underwent one PGT cycle. Thirty oocytes were retrieved, and 13 blastocysts were eligible for biopsy, of which six embryos had a balanced translocation and only four were non-carriers. Three cryopreserved embryo transfers with non-carrier status embryos resulted in the birth of two healthy children (one girl and one boy), who were subsequently confirmed to have normal karyotypes. CONCLUSIONS: This study reported a girl with multiple congenital disabilities associated with a maternal balanced t(X-A) and verified that the distinction between non-carrier and carrier embryos is an effective and applicable strategy to avoid transferring genetic and reproductive risks to the offspring of t(X-A) carriers.


Subject(s)
Abnormalities, Multiple/genetics , Chromosomes, Human, Pair 1 , Chromosomes, Human, X , Preimplantation Diagnosis , Translocation, Genetic , Female , Heart Defects, Congenital/genetics , Humans , Infant, Newborn , Neurodevelopmental Disorders/genetics , Reinfection/genetics
15.
J Assist Reprod Genet ; 38(5): 1247-1253, 2021 May.
Article in English | MEDLINE | ID: mdl-33677746

ABSTRACT

PURPOSE: The purpose of this study is to explore the reproductive outcomes of women with Turner syndrome (TS) in preimplantation genetic testing (PGT) cycles. METHODS: A retrospective study of 100 controlled ovarian stimulating cycles, 68 TS (sixty-four mosaic Turner syndrome (MTS) and four pure Turner syndrome (PTS)) women underwent PGT was conducted from 2013 to 2018. RESULTS: Embryo X chromosome abnormal rates of TS women were significantly higher than women with normal karyotype (7.04 vs 1.61%, P<0.01). Cumulative live birth rates (CLBR) after PGT-NGS treatment were lower in TS than control (31.15 vs 45.59%, P<0.05). Clinical pregnancy rates per transfer (CPR), miscarriage rates (MR) and live birth rates per transfer (LBR) remained comparable between TS and control group. Reproductive outcomes (X chromosome abnormal rates, CPR, MR, LBR and CLBR) among low (<10%), medium (10-50%) and high (>50%) level 45,X mosaicism groups were not statistically different. CONCLUSIONS: To avoid high risk of embryo X chromosome abnormalities, prenatal or preimplantation genetic testing should be recommended to mosaic or pure TS patients.


Subject(s)
Live Birth/epidemiology , Mosaicism , Preimplantation Diagnosis , Turner Syndrome/diagnosis , Abortion, Spontaneous/epidemiology , Abortion, Spontaneous/genetics , Abortion, Spontaneous/pathology , Adult , Aneuploidy , Birth Rate , Blastocyst/metabolism , Embryo Transfer/methods , Female , Fertilization in Vitro/trends , Genetic Testing/trends , Humans , Live Birth/genetics , Pregnancy , Pregnancy Rate , Turner Syndrome/genetics , Turner Syndrome/pathology
16.
Fertil Steril ; 116(1): 174-180, 2021 07.
Article in English | MEDLINE | ID: mdl-33676754

ABSTRACT

OBJECTIVE: To investigate the effects of non-Robertsonian translocation with chromosome fusion (N-RBCF) on preimplantation embryos. DESIGN: Case series. SETTING: University-affiliated center. PATIENT(S): Twelve couples with N-RBCF. INTERVENTION(S): Assisted reproduction with preimplantation genetic testing in chromosomal structural rearrangement (PGT-SR). MAIN OUTCOME MEASURE(S): Normal embryo rate, unbalanced translocation rate. RESULT(S): PGT was performed in 12 N-RBCF carriers, of whom 4 carried Y-autosome fusions and 8 autosomal fusions. A total of 12 (63.2%) of 19 blastocysts exhibited normal/balanced embryos, and only one (5.3%) embryo exhibited unbalanced translocations among Y-autosome fusion cases. In contrast to these findings, the percentage of normal/balanced blastocysts in 8 autosomal N-RBCF cases was 28.2% (11/39), whereas the unbalanced translocation rate was 53.8%. Furthermore, the percentage of normal/balanced embryos in the Robertsonian translocation group was significantly higher than that of the 8 autosomal N-RBCF (48.7% vs. 28.2%) cases. The rates of abnormality from chromosomal fusion in the 8 autosomal N-RBCF cases were significantly higher than those noted in the Robertsonian translocation (53.8% vs. 31.4%) subjects. The results of the stratified analysis according to the carrier's sex demonstrated that the rates of unbalanced translocation were significantly higher in the male autosomal N-RBCF subjects than those from the corresponding Robertsonian translocation (55% vs. 19.7%) cases. CONCLUSION(S): A low number of unbalanced translocations was identified in blastocysts from N-RBCF subjects who carried the Y fusion. The risk of unbalanced translocation in autosomal N-RBCF was higher than that of the Robertsonian translocation, notably in male carriers.


Subject(s)
Blastocyst/pathology , Chromosome Aberrations , Chromosomes, Human, Y , Genetic Testing , Preimplantation Diagnosis , Translocation, Genetic , Adult , Female , High-Throughput Nucleotide Sequencing , Humans , In Situ Hybridization, Fluorescence , Karyotyping , Male , Predictive Value of Tests , Pregnancy
17.
J Assist Reprod Genet ; 38(3): 735-742, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33432423

ABSTRACT

PURPOSE: The purpose of this study is to summarize the clinical outcomes of apparently balanced chromosome rearrangement (ABCR) carriers in preimplantation genetic testing (PGT) cycles by next-generation sequencing following microdissecting junction region (MicroSeq) to distinguish non-carrier embryos from balanced carriers. METHODS: A retrospective study of 762 ABCR carrier couples who requested PGT for structural rearrangements combined with MicroSeq at the Reproductive and Genetic Hospital of CITIC-Xiangya was conducted between October 2014 and October 2019. RESULTS: Trophectoderm biopsy was performed in 4122 blastocysts derived from 917 PGT-SR cycles and 3781 blastocysts were detected. Among the 3781 blastocysts diagnosed, 1433 (37.9%, 1433/3781) were balanced, of which 739 blastocysts were carriers (51.57%, 739/1433) and 694 blastocysts were normal (48.43%, 694/1433). Approximately 26.39% of cycles had both carrier and normal embryo transfer, and the average number of biopsied blastocysts was 6.7. In the cumulative 223 biopsied cycles with normal embryo transfer, all couples chose to transfer the normal embryos. In the 225 cycles with only carrier embryos, the couples chose to transfer the carrier embryos in 169/225 (75.11%) cycles. A total of 732 frozen embryo transfer cycles were performed, resulting in 502 clinical pregnancies. Cumulatively, 326 babies were born; all of these babies were healthy and free of any developmental issues. CONCLUSION: Our study provides the first evaluation of the clinical outcomes of a large sample with ABCR carrier couples undergoing the MicroSeq-PGT technique and reveals its powerful ability to distinguish between carrier and non-carrier balanced embryos.


Subject(s)
Chromosome Aberrations/statistics & numerical data , Chromosome Disorders/diagnosis , Fertilization in Vitro/methods , Genetic Testing/methods , Preimplantation Diagnosis/methods , Adult , Chromosome Disorders/genetics , Embryo Transfer , Female , Humans , Male , Pregnancy , Pregnancy Outcome , Pregnancy Rate , Retrospective Studies
18.
J Assist Reprod Genet ; 38(1): 243-250, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33094427

ABSTRACT

PURPOSE: To elucidate the genetic cause of intellectual deficiency and/or congenital malformations in two parental reciprocal translocation carriers and provide appropriate strategies of assisted reproductive therapy (ART). MATERIALS AND METHODS: Two similar couples having a child with global developmental delay/intellectual disability symptoms attended the Reproductive and Genetic Hospital of CITIC-Xiangya (Changsha, China) in 2017 and 2019, respectively, in order to determine the cause(s) of the conditions affecting their child and to seek ART to have a healthy baby. Both of the healthy couples were not of consanguineous marriage, denied exposure to toxicants, and had no adverse life history. This study was approved by the Institutional Ethics Committee of the Reproductive & Genetic Hospital of CITIC-Xiangya, and written informed consent was obtained from the parents. Genetic diagnoses were performed by karyotype analysis, breakpoint mapping analysis of chromosomal translocation(s), single-nucleotide polymorphism (SNP) microarray analysis, and whole-exome sequencing (WES) for the two children and different appropriate reproductive strategies were performed in the two families. RESULTS: Karyotype analysis revealed that both patients carried parental reciprocal translocations [46,XY,t(7;16)(p13;q24)pat and 46,XY,t(13;17)(q12.3;p11.2)pat, respectively]. Follow-up breakpoint mapping analysis showed no interruption of associated genes, and SNP microarray analysis identified no significant copy number variations (CNVs) in the two patients. Moreover, WES results revealed that patients 1 and 2 harbored candidate compound heterozygous mutations of MCOLN1 [c.195G>C (p.K65N) and c.1061G>A (p.W354*)] and MCPH1 [c.877A>G (p.S293G) and c.1869_1870delAT (p.C624*)], respectively, that were inherited from their parents and not previously reported. Furthermore, the parents of patient 1 obtained 10 embryos during ART cycle, and an embryo of normal karyotype and non-carrier of observed MCOLN1 mutations according to preimplantation genetic testing for structural rearrangement and monogenic defect was successfully transferred, resulting in the birth of a healthy boy. The parents of patient 2 chose to undergo ART with donor sperm to reduce the risk of recurrence. CONCLUSIONS: Systematic genetic diagnosis of two carriers of inherited chromosomal translocations accompanied by clinical phenotypes revealed their cause of disease, which was critical for genetic counseling and further ART for these families.


Subject(s)
Congenital Abnormalities/diagnosis , Intellectual Disability/diagnosis , Preimplantation Diagnosis , Translocation, Genetic/genetics , Child , China/epidemiology , Congenital Abnormalities/genetics , Congenital Abnormalities/pathology , DNA Copy Number Variations/genetics , Female , Fertilization in Vitro/trends , Genetic Counseling/trends , Heterozygote , Humans , Intellectual Disability/epidemiology , Intellectual Disability/genetics , Intellectual Disability/pathology , Karyotyping , Male , Parents , Pregnancy , Reproduction/genetics , Reproduction/physiology , Reproductive Techniques, Assisted , Exome Sequencing
19.
J Assist Reprod Genet ; 36(12): 2533-2539, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31720922

ABSTRACT

RESEARCH QUESTION: Can preimplantation genetic testing for structural rearrangement (PGT-SR) with next-generation sequencing (NGS) be used to infertile patients carrying small supernumerary marker chromosomes (sSMCs)? DESIGN: In this study, two infertile patients carrying ring sSMCs were recruited. Different molecular cytogenetic techniques were performed to identify the features of the two sSMCs, followed by clinical PGT-SR cycles. RESULTS: The results of G-banding and FISH showed that patient 1's sSMC originated from the 8p23-p10 region, with a resulting karyotype of [ 47,XY, del(8)(p23p10), +r(8)(p23p10).ish del(8)(CEP8+,subtle 8p+,subtle 8q+),r(8)(CEP8+,subtle 8p-,subtle 8q-)[55/60].arr(1-22) ×2,(X,Y)×1]. The sSMC of patient 2 was derived from chromosome 3 and further microdissection with next-generation sequencing (MicroSeq) revealed it contained the region of chromosome 3 between 93,504,855 and 103,839,892 bp (GRCh37), which involved 52 known genes. So the karyotype of patient 2 was 47,XX, +mar.ish der(3)(CEP3+,subtle 3p-,subtle 3q-)[49/60].arr[GRCh37] 3q11.2q13.1(93,500,001_103,839,892) ×3(0.5). PGT-SR with NGS was performed to provide reproductive guidance for the two patients. For patient 1, four balanced euploid embryos and four embryos with partial trisomy/monosomy of (8p23.1-8p11.21) were obtained, and a balanced euploid embryo was successfully implanted and had resulted in a healthy baby. For patient 2, an embryo with monosomy of sex chromosomes and another embryo with a duplication at (3q11-q13.1), neither of which was available for implantation. CONCLUSIONS: The identification of the origins and structural characteristics of rare sSMCs should rely on different molecular cytogenetic techniques. PGT-SR is an alternative fertility treatment for these patients carrying sSMCs. This study may provide directions for the assisted reproductive therapy for infertile patients with sSMC.


Subject(s)
Chromosome Aberrations , Cytogenetic Analysis , Genetic Testing , Trisomy/genetics , Adult , Chromosomes/genetics , Chromosomes, Human, Pair 3/genetics , Female , High-Throughput Nucleotide Sequencing , Humans , Infertility/genetics , Infertility/pathology , Karyotype , Karyotyping , Male , Mosaicism , Trisomy/pathology
20.
Fertil Steril ; 112(2): 291-297.e3, 2019 08.
Article in English | MEDLINE | ID: mdl-31133385

ABSTRACT

OBJECTIVE: To investigate the effects of parental mosaicism on their preimplantation embryos. DESIGN: Case series. SETTING: An institute for reproductive and stem cell engineering. PATIENT(S): Sixty-eight mosaic couples. INTERVENTION(S): Assisted reproduction with preimplantation genetic testing (PGT). MAIN OUTCOME MEASURE(S): Karyotypes, embryo-related chromosomal abnormalities, and PGT results. RESULT(S): A total of 209 embryos were obtained from 68 mosaic couples, and 153 (73.21%) of 209 of the total embryos were obtained from 55 mosaic couples with abnormal sex chromosome numbers. Of these 153 embryos, 2 (1.31%) had an abnormal copy number of X chromosome, 1 had mosaicism with 46,XN,+X(mosaic, 40%), 1 (0.65%) had an extra Y chromosome, 3 (1.96%) exhibited both X chromosomal and autosomal abnormalities, and 4 (2.61%) exhibited de novo X chromosome structural abnormalities. A total of 56 (26.79%) of 209 embryos were obtained from mosaic couples (n = 13) with abnormal autosomal structures. Notably, of these 56 embryos, 5 (8.93%) had a 16q21-q24.3 copy number abnormality related to the parental karyotype, with a fragile site at 16q22; 5 (7.14%) exhibited 46,XX,dup(8p23.1-8p11.21) and 46,XY,del(8p22-8p11.21), which were related to the parental karyotype; and 10 (17.86%) were de novo chromosome abnormalities. CONCLUSION(S): Our data demonstrate that the risk of embryo-related chromosome abnormalities in mosaic patients with abnormal sex chromosomes is very low. Therefore, PGT may not need to be recommended for mosaic patients with abnormal copy numbers of sex chromosomes, especially for patients with financial difficulties. By contrast, the mosaic patients with structural abnormalities of autosomes may have a relatively high risk of abnormal embryos with an unbalanced segment of the involved chromosomes. Thus, PGT is highly recommended for mosaic patients with autosomal structure abnormalities, especially those with a fragile site at 16q22.


Subject(s)
Fertilization in Vitro , High-Throughput Nucleotide Sequencing/methods , Mosaicism , Preimplantation Diagnosis/methods , Adult , Blastocyst , Chromosome Aberrations/embryology , Chromosome Aberrations/statistics & numerical data , Cytogenetic Analysis/methods , Cytogenetic Analysis/statistics & numerical data , Female , Fertilization in Vitro/methods , Fertilization in Vitro/statistics & numerical data , Genetic Testing/methods , Humans , Male , Mosaicism/statistics & numerical data , Preimplantation Diagnosis/statistics & numerical data , Retrospective Studies , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...