Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38932022

ABSTRACT

In this study, a series of amine-modified mesoporous silica (AMS)-based epoxy composites with superhydrophobic biomimetic structure surface of Xanthosoma sagittifolium leaves (XSLs) were prepared and applied as anti-corrosion and anti-biofilm coatings. Initially, the AMS was synthesized by the base-catalyzed sol-gel reaction of tetraethoxysilane (TEOS) and triethoxysilane (APTES) through a non-surfactant templating route. Subsequently, a series of AMS-based epoxy composites were prepared by performing the ring-opening polymerization of DGEBA with T-403 in the presence of AMS spheres, followed by characterization through FTIR, TEM, and CA. Furthermore, a nano-casting technique with polydimethylsiloxane (PDMS) as the soft template was utilized to transfer the surface pattern of natural XSLs to AMS-based epoxy composites, leading to the formation of AMS-based epoxy composites with biomimetic structure. From a hydrophilic CA of 69°, the surface of non-biomimetic epoxy significantly increased to 152° upon introducing XSL surface structure to the AMS-based epoxy composites. Based on the standard electrochemical anti-corrosion and anti-biofilm measurements, the superhydrophobic BEAMS3 composite was found to exhibit a remarkable anti-corrosion efficiency of ~99% and antimicrobial efficacy of 82% as compared to that of hydrophilic epoxy coatings.

2.
Polymers (Basel) ; 15(12)2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37376310

ABSTRACT

In this study, we developed a series of Au/electroactive polyimide (Au/EPI-5) composite for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) using NaBH4 as a reducing agent at room temperature. The electroactive polyimide (EPI-5) synthesis was performed by chemical imidization of its 4,4'-(4.4'-isopropylidene-diphenoxy) bis (phthalic anhydride) (BSAA) and amino-capped aniline pentamer (ACAP). In addition, prepare different concentrations of Au ions through the in-situ redox reaction of EPI-5 to obtain Au nanoparticles (AuNPs) and anchored on the surface of EPI-5 to form series of Au/EPI-5 composite. Using SEM and HR-TEM confirm the particle size (23-113 nm) of the reduced AuNPs increases with the increase of the concentration. Based on CV studies, the redox capability of as-prepared electroactive materials was found to show an increase trend: 1Au/EPI-5 < 3Au/EPI-5 < 5Au/EPI-5. The series of Au/EPI-5 composites showed good stability and catalytic activity for the reaction of 4-NP to 4-AP. Especially, the 5Au/EPI-5 composite shows the highest catalytic activity when applied for the reduction of 4-NP to 4-AP within 17 min. The rate constant and kinetic activity energy were calculated to be 1.1 × 10-3 s-1 and 38.9 kJ/mol, respectively. Following a reusability test repeated 10 times, the 5Au/EPI-5 composite maintained a conversion rate higher than 95%. Finally, this study elaborates the mechanism of the catalytic reduction of 4-NP to 4-AP.

3.
Polymers (Basel) ; 15(9)2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37177188

ABSTRACT

Research on the development of flexible silica aerogels (FSAs) has been ongoing due to their excellent thermal insulation, low density, and high elasticity. However, the physical properties of FSAs, such as density, thermal conductivity, mechanical strength, and surface wettability, are highly dependent on the preparation conditions. To achieve the desired properties of FSAs for various applications, it is necessary to develop a method to fine-tune their physical properties. In this paper, two modifiers of methyltrimethoxysilane (MTMS)/trimethylethoxysilane (TMES) were employed to fine-tune the bulk density of a series of flexible silica aerogels (FSAs), reflecting a series of FSAs with fine-tunable physical properties. First, the precursor was synthesized by a click reaction between vinyltrimethoxysilane (VTMS) and 2,2' (ethylenedioxy) diethanethiol (EDDET). The VTMS, EDDET, and the as-prepared precursor were characterized by FT-IR and NMR spectroscopy. Subsequently, the precursor was converted into a series of FSAs (denoted by FSA, FSA-M, and FSA-T) through conventional sol-gel reactions with/without MTMS/TMES. Chemical structures of synthesized FSAs were confirmed by 13C and 29Si solid-state NMR spectroscopy. The porous structure of FSAs was identified by BET and SEM, respectively. Physical properties, such as thermal conductivity, mechanical strength, and surface wettability of FSAs were determined by a Hot Disk, durometer/DMA in compression mode, and contact angle measurements, respectively. This study found FSAs containing none, 1 wt%, 5 wt%, and 10 wt% of MTMS increase the density of FSAs from 0.419 g/cm3 (FSA), 0.423 g/cm3 (FSA-M1), 0.448 g/cm3 (FSA-M5), and 0.456 g/cm3 (FSA-M10). It should be noted that the thermal conductivity, surface hardness, bulk mechanical strength, and hydrophobicity of FSA-Ms of increasing MTMS loading were all found to show a rising trend, while FSA-Ts exhibited lower density. FSA-T10 exhibited lower thermal conductivity, surface hardness, and bulk mechanical strength as compared to FSA. However, it was found to show higher hydrophobicity as compared to that of FSA.

4.
Polymers (Basel) ; 15(23)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38232031

ABSTRACT

Hydrogen sulfide, a colorless, flammable gas with a distinct rotten egg odor, poses severe health risks in industrial settings. Sensing hydrogen sulfide is crucial for safeguarding worker safety and preventing potential accidents. This study investigated the gas-sensing performance of an electroactive polymer (i.e., polyaniline, PANI) and its composites with active carbon (AC) (i.e., PANI-AC1 and PANI-AC3) toward H2S at room temperature. PANI-AC composites-coated IDE gas sensors were fabricated and their capability of detecting H2S at concentrations ranging from 1 ppm to 30 ppm was tested. The superior gas-sensing performance of the PANI-AC composites can be attributed to the increased surface area of the materials, which provided increased active sites for doping processes and enhanced the sensing capability of the composites. Specifically, the incorporation of AC in the PANI matrix resulted in a substantial improvement in the doping process, which led to stronger gas-sensing responses with higher repeatability and higher stability toward H2S compared to the neat PANI-coated IDE sensor. Furthermore, the as-prepared IDE gas sensor exhibited the best sensing response toward H2S at 60% RH. The use of agricultural-waste coconut husk for the synthesis of these high-performance gas-sensing materials promotes sustainable and eco-friendly practices while improving the detection and monitoring of H2S gas in industrial settings.

5.
Polymers (Basel) ; 14(17)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36080561

ABSTRACT

In this study, electroactive poly (amic acid) (EPAA) and corresponding polyimide (EPI) without or with a sulfonated group (i.e., S-EPAA, and S-EPI) were prepared and applied in electrochemical sensing of ascorbic acid (AA). The electroactive polymers (EAPs) containing EPAA/EPI and S-EPAA/S-EPI were synthesized by using an amine-capped aniline trimer (ACAT) and sulfonated amine-capped aniline trimer (S-ACAT) as an electroactive segment that controlled the redox capability and influenced the degree of sensitivity of the EAPs towards AA. Characterization of the as-prepared EAPs was identified by FTIR spectra. The redox capability of the EAPs was investigated by electrochemical cyclic voltammetric studies. It should be noted that the redox capability of the EAPs was found to show the following trend: S-EPAA > S-EPI > EPAA > EPI. For the electrochemical sensing studies, a sensor constructed from an S-EPAA-modified carbon paste electrode (CPE) demonstrated 2-fold, 1.27-fold, and 1.35-fold higher electro-catalytic activity towards the oxidation of AA, compared to those constructed using a bare CPE, S-EPI-, and EPI/EPAA-modified CPE, respectively. The higher redox capability of S-EPAA-modified CPE exhibited a good electrochemical response towards AA at a low oxidative potential, with good stability and selectivity. Moreover, an electrochemical sensor constructed from S-EPAA-modified CPE was found to reveal better selectivity for a tertiary mixture of AA/DA/UA, as compared to that of EPI-modified, EPAA-modified and S-EPI-modified CPE, based on a series of differential pulse voltammograms.

6.
ACS Appl Bio Mater ; 5(8): 3778-3787, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35831781

ABSTRACT

Sulfonated copolyanilines (SPANs), SPAN-40 and SPAN-75, were prepared and applied in this tissue engineering study. SPAN scaffolds (SPANs) and control group polyaniline (PANI) were synthesized by performing oxidative polymerization. To further research the effects of neuron regeneration, PC12 cells were cultured on as-prepared PANI and SPANs with laminin (La) treatment under electrical stimulation. The effects on PC12 cell differentiation were investigated by controlling the amount of sulfonated groups (-SO3H) in the SPAN chain, the electrical stimulation voltage, and the presence or absence of La coating. The adhesion and proliferation of cells increased with the degree of sulfonation; La and electrical stimulation further promoted neuronal cell differentiation as increased neurite length was demonstrated in the micrograph analyses. In summary, the sulfonated copolyaniline coated with La had the best effect on neuronal differentiation under electrical stimulation, suggesting its potential as a substrate for nerve tissue engineering.


Subject(s)
Laminin , Tissue Engineering , Aniline Compounds/pharmacology , Animals , Electric Stimulation , Laminin/pharmacology , PC12 Cells , Polymers/pharmacology , Rats
7.
Materials (Basel) ; 16(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36614477

ABSTRACT

In this paper, comparative studies of hydrophilic and hydrophobic mesoporous silica particles (MSPs) on the dielectric properties of their derivative polyester imide (PEI) composite membranes were investigated. A series of hydrophilic and hydrophobic MSPs were synthesized with the base-catalyzed sol-gel process of TEOS, MTMS, and APTES at a distinctive feeding ratio with a non-surfactant template of D-(-)-Fructose as the pore-forming agent. Subsequently, the MSPs were blended with the diamine of APAB, followed by introducing the dianhydride of TAHQ with mechanical stirring for 24 h. The obtained viscous solution was subsequently coated onto a copper foil, 36 µm in thickness, followed by performing thermal imidization at specifically programmed heating. The dielectric constant of the prepared membranes was found to show an obvious trend: PEI containing hydrophilic MSPs > PEI > PEI containing hydrophobic MSPs. Moreover, the higher the loading of hydrophilic MSPs, the higher the value of the dielectric constant and loss tangent. On the contrary, the higher the loading of hydrophobic MSPs, the lower the value of the dielectric constant with an almost unchanged loss tangent.

SELECTION OF CITATIONS
SEARCH DETAIL
...