Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Pharm Sci ; 2024 May 18.
Article in English | MEDLINE | ID: mdl-38768754

ABSTRACT

In this work, the ability of the artificial stomach and duodenum (ASD) model to predict bioavailability in rats was investigated using a poorly soluble model compound, BI-639667. A solution and four suspensions of different solid forms of BI-639667 were tested both in an ASD and rats. Rank order of the bioavailability estimated from an ASD apparatus is consistent with that of in vivo result in rats, i.e., solution > salicylic acid cocrystal > malate salt > maleate salt > monohydrate, which correlates with the ability of the different solid forms to maintain supersaturation with respect to the stable form in aqueous solution. The results support the use of an ASD for characterizing dissolution performance of solid forms to aid their selection for tablet formulation development.

2.
AAPS PharmSciTech ; 23(6): 185, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35778639

ABSTRACT

Though oral drug delivery is the most preferred route of administration, there is high drug pharmacokinetic variability associated with the oral route. Change in drug substance particle size distribution, formulation composition, or manufacturing process may impact the dissolution and, hence, the systemic drug absorption in biopharmaceutics classification system class II compounds. In the present research, using a Boehringer Ingelheim investigational drug substance as the model compound, the tiny-TIM in vitro data and in silico pharmacokinetic model were used to establish in vitro-in vivo correlation and to predict the oral bioavailability. The level C in vitro-in vivo correlation between in vivo AUC and in vitro amount dissolved in both fasted and fed states could be established. Furthermore, level A in vitro-in vivo correlation was established between in vivo fraction absorbed and bioaccessibility from tiny-TIM dissolution in both fasted and fed states. Prediction of positive food effect from tiny-TIM dissolution was consistent with conclusion from clinical studies. Such predictive models developed using the minimum clinical data and the in vitro tiny-TIM data have the potential to reduce the animal and human experiments and to expedite the overall drug development process.


Subject(s)
Biopharmaceutics , Models, Biological , Animals , Computer Simulation , Pharmaceutical Preparations , Solubility
3.
Pharmaceutics ; 13(9)2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34575401

ABSTRACT

Uridine 5'-diphospho-glucuronosyltransferases (UGTs) are expressed in the small intestines, but prediction of first-pass extraction from the related metabolism is not well studied. This work assesses physiologically based pharmacokinetic (PBPK) modeling as a tool for predicting intestinal metabolism due to UGTs in the human gastrointestinal tract. Available data for intestinal UGT expression levels and in vitro approaches that can be used to predict intestinal metabolism of UGT substrates are reviewed. Human PBPK models for UGT substrates with varying extents of UGT-mediated intestinal metabolism (lorazepam, oxazepam, naloxone, zidovudine, cabotegravir, raltegravir, and dolutegravir) have demonstrated utility for predicting the extent of intestinal metabolism. Drug-drug interactions (DDIs) of UGT1A1 substrates dolutegravir and raltegravir with UGT1A1 inhibitor atazanavir have been simulated, and the role of intestinal metabolism in these clinical DDIs examined. Utility of an in silico tool for predicting substrate specificity for UGTs is discussed. Improved in vitro tools to study metabolism for UGT compounds, such as coculture models for low clearance compounds and better understanding of optimal conditions for in vitro studies, may provide an opportunity for improved in vitro-in vivo extrapolation (IVIVE) and prospective predictions. PBPK modeling shows promise as a useful tool for predicting intestinal metabolism for UGT substrates.

4.
Int J Pharm ; 600: 120505, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33753162

ABSTRACT

This review focuses on options available to a pharmaceutical scientist to predict in vivo supersaturation and precipitation of poorly water-soluble drugs. As no single device or system can simulate the complex gastrointestinal environment, a combination of appropriate in vitro tools may be utilized to get optimal predictive information. To address the empirical issues encountered during small-scale and full-scale in vitro predictive testing, theoretical background and relevant case studies are discussed. The practical considerations for selection of appropriate tools at various stages of drug development are recommended. Upcoming technologies that have potential to further reduce in vivo studies and expedite the drug development process are also discussed.


Subject(s)
Pharmaceutical Preparations , Water , Chemical Precipitation , Solubility
5.
Parasit Vectors ; 12(1): 433, 2019 Sep 06.
Article in English | MEDLINE | ID: mdl-31492168

ABSTRACT

BACKGROUND: The safety of ProHeart® 12 (PH 12; extended-release injectable suspension; 10% moxidectin in glyceryl tristearate microspheres) was evaluated in four studies using Beagle dogs and one study using ivermectin-sensitive Collies. The recommended dose is 0.5 mg/kg subcutaneously once yearly. METHODS: Study 1: safety margin was evaluated as 3 treatments of PH 12 (0× (control); 1× (recommended dose); 3× (3 times recommended dose) and 5× (5 times recommended dose) in 12 months via clinical observations, body weights, food consumption, injection site observations, physical examinations, moxidectin tissue assay, pharmacokinetics, and clinical and anatomic pathology. Study 2: safety in breeding-age males was demonstrated by semen testing at 14-day intervals from Day 7 to Day 91 post-treatment (0× or 3×). Study 3: reproductive safety in females was demonstrated by monitoring dams and litters following treatments (0× or 3×) administered during breeding, gestation, or lactation. Study 4: safety in dogs surgically implanted with adult heartworms was evaluated by clinical and laboratory monitoring following treatment with 0× or 3× administered 61 days post-implantation. Study 5: safety in ivermectin-sensitive dogs (120 µg/kg SC) was by clinical monitoring for 1 week after administering 1×, 3× or 5×. RESULTS: Study 1: slight swelling clinically detectable at some 3× and 5× injection sites was characterized microscopically as granulomatous inflammation, like tissue responses to medical implants, interpreted as non-adverse. Pharmacokinetics were dose-proportional and there was little or no systemic accumulation. Residual moxidectin mean (range) at 1× injection sites after 1 year was 16.0% (0.045-37.6%) of the administered mass. Studies 2 and 3: no effects were identified in reproductive indices (females) or semen quality characteristics (males). Study 4: PH 12 produced marked reductions in circulating microfilariae and lower numbers of adult heartworms, but no adverse clinical signs were identified. Study 5: there were no abnormal clinical signs at 1×, 3× or 5× overdoses of PH 12 in ivermectin-sensitive dogs. CONCLUSIONS: PH 12 has a > 5× safety margin in both normal and ivermectin-sensitive dogs, has no effects on canine reproduction, and is well tolerated in heartworm-positive dogs. The only treatment-related finding was non-adverse, granulomatous inflammation at the injection site.


Subject(s)
Antinematodal Agents/adverse effects , Delayed-Action Preparations/adverse effects , Drug-Related Side Effects and Adverse Reactions/epidemiology , Drug-Related Side Effects and Adverse Reactions/pathology , Injections/adverse effects , Macrolides/adverse effects , Suspensions/adverse effects , Animals , Antinematodal Agents/administration & dosage , Delayed-Action Preparations/administration & dosage , Dog Diseases/drug therapy , Dogs , Heartwater Disease/drug therapy , Macrolides/administration & dosage , Suspensions/administration & dosage , Treatment Outcome
6.
ACS Med Chem Lett ; 7(5): 525-30, 2016 May 12.
Article in English | MEDLINE | ID: mdl-27190604

ABSTRACT

A high-throughput screen based on a viral replication assay was used to identify inhibitors of the human cytomegalovirus. Using this approach, hit compound 1 was identified as a 4 µM inhibitor of HCMV that was specific and selective over other herpes viruses. Time of addition studies indicated compound 1 exerted its antiviral effect early in the viral life cycle. Mechanism of action studies also revealed that this series inhibited infection of MRC-5 and ARPE19 cells by free virus and via direct cell-to-cell spread from infected to uninfected cells. Preliminary structure-activity relationships demonstrated that the potency of compound 1 could be improved to a low nanomolar level, but metabolic stability was a key optimization parameter for this series. A strategy focused on minimizing metabolic hydrolysis of the N1-amide led to an alternative scaffold in this series with improved metabolic stability and good pharmacokinetic parameters in rat.

7.
Bioorg Med Chem Lett ; 25(2): 210-5, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25515558

ABSTRACT

A prodrug approach was developed to address the low oral bioavailability of a poorly soluble (<0.1µg/mL in pH 6.8 buffer) but highly permeable thumb pocket 1 HCV NS5B polymerase inhibitor. Bioconversion rates of structurally diverse prodrug derivatives were evaluated in a panel of in vitro assays using microsomes, from either liver or intestinal tissues, simulated intestinal fluids, simulated gastric fluids or plasma. In vivo bioconversion of promising candidates was evaluated following oral administration to rats. The most successful strategy involved modification of the parent drug carboxylic acid moiety to glycolic amide esters which improved solubility in lipid-based self-emulsifying drug delivery systems (SEDDS). Crystalline prodrug analog 36 (mp 161°C) showed good solubility in individual SEDDS components (up to 80mg/mL) compared to parent 2 (<3mg/mL; mp 267°C) and cross-species bioconversions which correlated with in vitro stability in liver microsomes.


Subject(s)
Drug Delivery Systems/methods , Emulsions/administration & dosage , Nucleic Acid Synthesis Inhibitors/administration & dosage , Prodrugs/administration & dosage , Viral Nonstructural Proteins/antagonists & inhibitors , Administration, Oral , Animals , Emulsions/chemistry , Emulsions/metabolism , Microsomes/drug effects , Microsomes/metabolism , Nucleic Acid Synthesis Inhibitors/chemistry , Nucleic Acid Synthesis Inhibitors/metabolism , Prodrugs/chemistry , Prodrugs/metabolism , Rats , Solubility , Viral Nonstructural Proteins/metabolism
8.
Antimicrob Agents Chemother ; 58(6): 3233-44, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24663024

ABSTRACT

BI 224436 is an HIV-1 integrase inhibitor with effective antiviral activity that acts through a mechanism that is distinct from that of integrase strand transfer inhibitors (INSTIs). This 3-quinolineacetic acid derivative series was identified using an enzymatic integrase long terminal repeat (LTR) DNA 3'-processing assay. A combination of medicinal chemistry, parallel synthesis, and structure-guided drug design led to the identification of BI 224436 as a candidate for preclinical profiling. It has antiviral 50% effective concentrations (EC50s) of <15 nM against different HIV-1 laboratory strains and cellular cytotoxicity of >90 µM. BI 224436 also has a low, ∼2.1-fold decrease in antiviral potency in the presence of 50% human serum and, by virtue of a steep dose-response curve slope, exhibits serum-shifted EC95 values ranging between 22 and 75 nM. Passage of virus in the presence of inhibitor selected for either A128T, A128N, or L102F primary resistance substitutions, all mapping to a conserved allosteric pocket on the catalytic core of integrase. BI 224436 also retains full antiviral activity against recombinant viruses encoding INSTI resistance substitutions N155S, Q148H, and E92Q. In drug combination studies performed in cellular antiviral assays, BI 224436 displays an additive effect in combination with most approved antiretrovirals, including INSTIs. BI 224436 has drug-like in vitro absorption, distribution, metabolism, and excretion (ADME) properties, including Caco-2 cell permeability, solubility, and low cytochrome P450 inhibition. It exhibited excellent pharmacokinetic profiles in rat (clearance as a percentage of hepatic flow [CL], 0.7%; bioavailability [F], 54%), monkey (CL, 23%; F, 82%), and dog (CL, 8%; F, 81%). Based on the excellent biological and pharmacokinetic profile, BI 224436 was advanced into phase 1 clinical trials.


Subject(s)
HIV Integrase Inhibitors/pharmacology , HIV-1/drug effects , HIV-1/enzymology , Amino Acid Substitution/genetics , Amino Acid Substitution/physiology , Animals , Anti-HIV Agents/pharmacology , Caco-2 Cells , Cloning, Molecular , Cytochrome P-450 Enzyme Inhibitors/pharmacology , DNA, Viral/drug effects , Drug Resistance, Viral , HIV Integrase/biosynthesis , HIV Integrase/genetics , HIV Integrase/metabolism , HIV Integrase Inhibitors/metabolism , HIV Integrase Inhibitors/pharmacokinetics , Hepatocytes/metabolism , Humans , Mice , Rats , Serum/virology , Virus Replication/drug effects
9.
Pharm Res ; 25(2): 313-9, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18030606

ABSTRACT

PURPOSE: Propofol is a water-insoluble intravenous anesthetic agent that is actually formulated as a water-in-oil emulsion with known drawbacks such as pain on injection, microorganism growth support and stability. We report on the properties of formulations of propofol in poly (N-vinyl-2-pyrrolidone)-block-poly(D,L-lactide), PVP-PLA, polymeric micelles (Propofol-PM). METHODS: Microbial growth in these formulations was evaluated with Pseudomonas aeruginosa (ATCC 9027), Staphylococcus aureus (ATCC 6538), Escherichia coli (ATCC 25922) and Candida albicans (ATCC 10231). Sleep-recovery studies in female Sprague-Dawley rats, at a dose of 10mg/kg were performed to compare pharmacodynamic profiles of the new Propofol-PM formulations with those of Diprivan, a commercially available lipid based propofol formulation. RESULTS: Growth of microorganisms was not supported in the Propofol-PM formulations tested. No significant differences in times to unconsciousness, awakening, recovery of righting reflex and full recovery were observed between Propofol-PM formulations and Diprivan. CONCLUSIONS: Propofol loaded in PVP-PLA micelles (Propofol-PM) is not significantly different in terms of pharmacodynamic but demonstrates no microorganism growth support and improved stability that opens up the door to pain on injection reduction strategy.


Subject(s)
Propofol/chemistry , Propofol/pharmacology , Animals , Chemistry, Pharmaceutical , Colony Count, Microbial , Drug Stability , Female , Particle Size , Rats , Rats, Sprague-Dawley , Sleep/drug effects
10.
Science ; 300(5619): 615-8, 2003 Apr 25.
Article in English | MEDLINE | ID: mdl-12714738

ABSTRACT

Block copolymer micelles are water-soluble biocompatible nanocontainers with great potential for delivering hydrophobic drugs. An understanding of their cellular distribution is essential to achieving selective delivery of drugs at the subcellular level. Triple-labeling confocal microscopy in live cells revealed the localization of micelles in several cytoplasmic organelles, including mitochondria, but not in the nucleus. Moreover, micelles change the cellular distribution of and increase the amount of the agent delivered to the cells. These micelles may thus be worth exploring for their potential to selectively deliver drugs to specified subcellular targets.


Subject(s)
Cytoplasm/metabolism , Drug Carriers/metabolism , Micelles , Nanotechnology , Organelles/metabolism , Animals , Azides/chemistry , Biocompatible Materials , Cell Nucleus/metabolism , Diffusion , Drug Carriers/chemistry , Endoplasmic Reticulum/metabolism , Ethylene Oxide/chemistry , Ethylene Oxide/metabolism , Fluoresceins , Fluorescence , Golgi Apparatus/metabolism , Hydrophobic and Hydrophilic Interactions , Lactones/chemistry , Lactones/metabolism , Lysosomes/metabolism , Microscopy, Confocal , Microscopy, Fluorescence , Mitochondria/metabolism , PC12 Cells , Polyethylene Glycols/chemistry , Polymers/chemistry , Polymers/metabolism , Rats , Rhodamines/chemistry , Solubility , Spectrometry, Fluorescence
12.
Bioconjug Chem ; 13(6): 1259-65, 2002.
Article in English | MEDLINE | ID: mdl-12440861

ABSTRACT

Poly(ethylene oxide)-b-poly(epsilon-caprolactone) (PEO-b-PCL) block copolymers self-assemble into micelles in aqueous solution. We have examined whether these micelles can internalize into P19 cells in vitro. Fluorescently labeled PEO(45)-b-PCL(23) block copolymer was prepared by conjugating a tetramethylrhodamine molecule to the end of the hydrophobic PCL block. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) studies yielded 24 +/- 2 and 25 +/- 2 nm, respectively, for the diameters of the micelles. The studies also showed that chemical labeling did not effect the morphology or size. When the rhodamine-labeled PEO(45)-b-PCL(23) block copolymer micelles were tested in vitro, time-, concentration-, and pH-dependence of the internalization process suggested that internalization proceeded by endocytosis. The results from these studies provide the first direct evidence for the internalization of PEO(45)-b-PCL(23) micelles. Future studies will utilize multiple labeling of these micelles, allowing questions to be addressed related to the fate of internalized micelles as drug carriers, the destination of the incorporated drugs or fluorescent probes released from micelles, and the identification of the subcellular localization of the whole drug-carrier system within cells, both in vitro and in vivo.


Subject(s)
Drug Carriers/chemistry , Drug Carriers/metabolism , Lactones/chemistry , Lactones/metabolism , Micelles , Polyethylene Glycols/chemistry , Polyethylene Glycols/metabolism , Animals , Biological Transport , Endocytosis , Hydrogen-Ion Concentration , Light , Magnetic Resonance Spectroscopy , Mice , Microscopy, Electron , Molecular Structure , Particle Size , Scattering, Radiation , Time Factors , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...