Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Image Process ; 31: 7322-7337, 2022.
Article in English | MEDLINE | ID: mdl-36306308

ABSTRACT

In leveraging manifold learning in domain adaptation (DA), graph embedding-based DA methods have shown their effectiveness in preserving data manifold through the Laplace graph. However, current graph embedding DA methods suffer from two issues: 1). they are only concerned with preservation of the underlying data structures in the embedding and ignore sub-domain adaptation, which requires taking into account intra-class similarity and inter-class dissimilarity, thereby leading to negative transfer; 2). manifold learning is proposed across different feature/label spaces separately, thereby hindering unified comprehensive manifold learning. In this paper, starting from our previous DGA-DA, we propose a novel DA method, namely A ttention R egularized Laplace G raph-based D omain A daptation (ARG-DA), to remedy the aforementioned issues. Specifically, by weighting the importance across different sub-domain adaptation tasks, we propose the A ttention R egularized Laplace Graph for class aware DA, thereby generating the attention regularized DA. Furthermore, using a specifically designed FEEL strategy, our approach dynamically unifies alignment of the manifold structures across different feature/label spaces, thus leading to comprehensive manifold learning. Comprehensive experiments are carried out to verify the effectiveness of the proposed DA method, which consistently outperforms the state of the art DA methods on 7 standard DA benchmarks, i.e., 37 cross-domain image classification tasks including object, face, and digit images. An in-depth analysis of the proposed DA method is also discussed, including sensitivity, convergence, and robustness.


Subject(s)
Attention , Computer Graphics , Humans
2.
Nanoscale ; 12(25): 13791-13800, 2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32573624

ABSTRACT

To achieve high photocatalytic efficiency, developing heterostructure photocatalysts by integrating two or more semiconductor materials into a well-oriented nanostructure is an effective strategy. Therefore, under visible light irradiation, a novel ternary 3D ZnIn2S4-MoS2 microsphere/1D CdS nanorod (ZIS/MoS2/CdS) photocatalyst with excellent H2 evolution ability was prepared. For this purpose, using the solvothermal method, interfacial contact ZIS/MoS2 microspheres were prepared, and 1D CdS nanorods were closely inserted into the interspace of flower-shaped ZIS/MoS2 microspheres, to generate close contact between ZnIn2S4, MoS2, and CdS. To expedite the production, separation, and transfer of photoinduced electron-hole pairs, this unique ternary heterostructure demonstrated excellent energy level distribution and a dimensional structure. Under the same conditions, the H2 production rate of the component proportion of the 150%-ZIS/10%-MoS2/CdS (150 wt% ZIS and 10 wt% MoS2) photocatalyst reached 7570.4 µmol g-1 h-1, which was ∼39.8 and 69.0 times higher than that achieved using bare ZnIn2S4 and CdS, respectively. Furthermore, the apparent quantum efficiency (AQE) reached 30.38% at 420 nm within 6 h; thus, for designing photocatalysts with a diversiform structure and spatial charge separation, this study provides new tactics.

3.
IEEE Trans Cybern ; 50(9): 3914-3927, 2020 Sep.
Article in English | MEDLINE | ID: mdl-31976922

ABSTRACT

Domain adaptation (DA) aims to generalize a learning model across training and testing data despite the mismatch of their data distributions. In light of a theoretical estimation of the upper error bound, we argue, in this article, that an effective DA method for classification should: 1) search a shared feature subspace where the source and target data are not only aligned in terms of distributions as most state-of-the-art DA methods do but also discriminative in that instances of different classes are well separated and 2) account for the geometric structure of the underlying data manifold when inferring data labels on the target domain. In comparison with a baseline DA method which only cares about data distribution alignment between source and target, we derive three different DA models for classification, namely, close yet discriminative DA (CDDA), geometry-aware DA (GA-DA), and discriminative and GA-DA (DGA-DA), to highlight the contribution of CDDA based on 1), GA-DA based on 2), and, finally, DGA-DA implementing jointly 1) and 2). Using both the synthetic and real data, we show the effectiveness of the proposed approach which consistently outperforms the state-of-the-art DA methods over 49 image classification DA tasks through eight popular benchmarks. We further carry out an in-depth analysis of the proposed DA method in quantifying the contribution of each term of our DA model and provide insights into the proposed DA methods in visualizing both real and synthetic data.

4.
J Neural Eng ; 15(3): 031003, 2018 06.
Article in English | MEDLINE | ID: mdl-29498353

ABSTRACT

The extracellular action potentials recorded on an electrode result from the collective simultaneous electrophysiological activity of an unknown number of neurons. Identifying and assigning these action potentials to their firing neurons-'spike sorting'-is an indispensable step in studying the function and the response of an individual or ensemble of neurons to certain stimuli. Given the task of neural spike sorting, the determination of the number of clusters (neurons) is arguably the most difficult and challenging issue, due to the existence of background noise and the overlap and interactions among neurons in neighbouring regions. It is not surprising that some researchers still rely on visual inspection by experts to estimate the number of clusters in neural spike sorting. Manual inspection, however, is not suitable to processing the vast, ever-growing amount of neural data. To address this pressing need, in this paper, thirty-three clustering validity indices have been comprehensively reviewed and implemented to determine the number of clusters in neural datasets. To gauge the suitability of the indices to neural spike data, and inform the selection process, we then calculated the indices by applying k-means clustering to twenty widely used synthetic neural datasets and one empirical dataset, and compared the performance of these indices against pre-existing ground truth labels. The results showed that the top five validity indices work consistently well across variations in noise level, both for the synthetic datasets and the real dataset. Using these top performing indices provides strong support for the determination of the number of neural clusters, which is essential in the spike sorting process.


Subject(s)
Action Potentials/physiology , Algorithms , Databases, Factual , Models, Neurological , Neurons/physiology , Animals , Cluster Analysis , Databases, Factual/trends , Humans
5.
ScientificWorldJournal ; 2014: 632575, 2014.
Article in English | MEDLINE | ID: mdl-25105164

ABSTRACT

We propose a novel local nearest neighbor distance (LNND) descriptor for anomaly detection in crowded scenes. Comparing with the commonly used low-level feature descriptors in previous works, LNND descriptor has two major advantages. First, LNND descriptor efficiently incorporates spatial and temporal contextual information around the video event that is important for detecting anomalous interaction among multiple events, while most existing feature descriptors only contain the information of single event. Second, LNND descriptor is a compact representation and its dimensionality is typically much lower than the low-level feature descriptor. Therefore, not only the computation time and storage requirement can be accordingly saved by using LNND descriptor for the anomaly detection method with offline training fashion, but also the negative aspects caused by using high-dimensional feature descriptor can be avoided. We validate the effectiveness of LNND descriptor by conducting extensive experiments on different benchmark datasets. Experimental results show the promising performance of LNND-based method against the state-of-the-art methods. It is worthwhile to notice that the LNND-based approach requires less intermediate processing steps without any subsequent processing such as smoothing but achieves comparable event better performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...