Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biosens Bioelectron ; 249: 116018, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38232451

ABSTRACT

Molecularly imprinted polymers (MIPs) are the equivalent of natural antibodies and have been widely used as synthetic receptors for the detection of disease biomarkers. Benefiting from their excellent chemical and physical stability, low-cost, relative ease of production, reusability, and high selectivity, MIP-based electrochemical sensors have attracted great interest in disease diagnosis and demonstrated superiority over other biosensing techniques. Here we compare various types of MIP-based electrochemical sensors with different working principles. We then evaluate the state-of-the-art achievements of the MIP-based electrochemical sensors for the detection of different biomarkers, including nucleic acids, proteins, saccharides, lipids, and other small molecules. The limitations, which prevent its successful translation into practical clinical settings, are outlined together with the potential solutions. At the end, we share our vision of the evolution of MIP-based electrochemical sensors with an outlook on the future of this promising biosensing technology.


Subject(s)
Biosensing Techniques , Molecular Imprinting , Molecularly Imprinted Polymers , Biosensing Techniques/methods , Polymers/chemistry , Molecular Imprinting/methods , Biomarkers , Electrochemical Techniques/methods
2.
Small ; 20(22): e2308756, 2024 May.
Article in English | MEDLINE | ID: mdl-38133491

ABSTRACT

Driven by the pressing demand for stable energy systems, zinc-air batteries (ZABs) have emerged as crucial energy storage solutions. However, the quest for cost-effective catalysts to enhance vital oxygen evolution and reduction reactions remains challenging. FeNiCo|MnGaOx heterostructure nanoparticles on carbon nanotubes (CNTs) are synthesized using liquid-phase reduction and H2 calcination approach. Compared to its component, such FeNiCo|MnGaOx/CNT shows a high synergistic effect, low impedance, and modulated electronic structure, leading to a superior bifunctional catalytic performance with an overpotential of 255 mV at 10 mA cm-2 and half-wave potential of 0.824 V (ω = 1600 rpm and 0.1 m KOH electrolyte). Moreover, ZABs based on FeNiCo|MnGaOx/CNT demonstrate notable features, including a peak power density of 136.1 mW cm-2, a high specific capacity of 808.3 mAh gZn -1, and outstanding stability throughout >158 h of uninterrupted charge-discharge cycling. Theoretical calculations reveal that the non-homogeneous interface can introduce more carriers and altered electronic structures to refine intermediate adsorption reactions, especially promoting O* formation, thereby enhancing electrocatalytic performance. This work demonstrates the importance of heterostructure interfacial modulation of electronic structure and enhancement of adsorption capacity in promoting the implementation of OER/ORR, ZABs, and related applications.

3.
ACS Appl Mater Interfaces ; 15(27): 32365-32375, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37384940

ABSTRACT

An efficient and stable bifunctional oxygen catalyst is necessary to complete the application of the rechargeable zinc-air battery. Herein, an economical and convenient process was adopted to successfully coat high-entropy alloy Fe12Ni23Cr10Co55-xMnx nanoparticles on carbon nanotubes (CNTs). In 0.1 M KOH solution, with a bifunctional oxygen overpotential (ΔE) of only 0.7 V, the catalyst Fe12Ni23Cr10Co30Mn25/CNT exhibits excellent bifunctional oxygen catalytic performance, exceeding most catalysts reported so far. In addition, the air electrode assembled with this catalyst exhibits high specific capacity (760 mA h g-1) and energy density (865.5 W h kg-1) in a liquid zinc-air battery, with a long-term cycle stability over 256 h. The density functional theory calculation points out that changing the atomic ratio of Co/Mn can change the adsorption energy of the oxygen intermediate (*OOH), which allows the ORR catalytic process to be accelerated in the alkaline environment, thereby increasing the ORR catalytic activity. This article has important implications for the progress of commercially available bifunctional oxygen catalysts and their applications in zinc-air batteries.

4.
Adv Mater ; 35(36): e2302499, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37155729

ABSTRACT

High-entropy-alloy nanoparticles (HEA-NPs) have attracted great attention because of their unique complex compositions and tailorable properties. Further expanding the compositional space is of great significance for enriching the material library. Here, a step-alloying strategy is developed to synthesis HEA-NPs containing a range of strongly repellent elements (e.g., Bi-W) by using the rich-Pt cores formed during the first liquid phase reaction as the seed of the second thermal diffusion. Remarkably, the representative HEA-NPs-(14) with up to 14 elements exhibits extremely excellent multifunctional electrocatalytic performance for pH-universal hydrogen evolution reaction (HER), alkaline methanol oxidation reaction (MOR), and oxygen reduction reaction (ORR). Briefly, HEA-NPs-(14) only requires the ultralow overpotentials of 11 and 18 mV to deliver 10 mA cm-2 and exhibits ultralong durability for 400 and 264 h under 100 mA cm-2 in 0.5 m H2 SO4 and 1 m KOH, respectively, which surpasses most advanced pH-universal HER catalysts. Moreover, HEA-NPs-(14) also exhibits an impressive peak current density of 12.6 A mg-1 Pt in 1 m KOH + 1 m MeOH and a half-wave potential of 0.86 V (vs RHE.) in 0.1 m KOH. The work further expands the spectrum of possible metal alloys, which is important for the broad compositional space and future data-driven material discovery.

5.
Biosens Bioelectron ; 216: 114638, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36049350

ABSTRACT

Accurate and reliable analysis of creatinine is clinically important for the early detection and monitoring of patients with kidney disease. We report a novel graphene nanoplatelet (GNP)/polydopamine (PDA)-molecularly imprinted polymer (MIP) biosensor for the ultra-trace detection of creatinine in a range of body fluids. Dopamine hydrochloride (DA) monomers were polymerized using a simple one-pot method to form a thin PDA-MIP layer on the surface of GNP with high density of creatinine recognition sites. This novel surface-MIP strategy resulted in a record low limit-of-detection (LOD) of 2 × 10-2 pg/ml with a wide dynamic detection range between 1 × 10-1-1 × 109 pg/ml. The practical application of this GNP/PDA-MIP biosensor has been tested by measuring creatinine in human serum, urine, and peritoneal dialysis (PD) fluids. The average recovery rate was 93.7-109.2% with relative standard deviation (RSD) below 4.1% compared to measurements made using standard clinical laboratory methods. Our GNP/PDA-MIP biosensor holds high promise for further development as a rapid, accurate, point-of-care diagnostic platform for detecting and monitoring patients with kidney disease.


Subject(s)
Biosensing Techniques , Graphite , Molecular Imprinting , Biosensing Techniques/methods , Creatinine , Dopamine , Electrochemical Techniques/methods , Humans , Indoles , Limit of Detection , Molecular Imprinting/methods , Molecularly Imprinted Polymers , Polymers
SELECTION OF CITATIONS
SEARCH DETAIL
...