Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Phenomics ; 5: 0080, 2023.
Article in English | MEDLINE | ID: mdl-37539075

ABSTRACT

Reliable and automated 3-dimensional (3D) plant shoot segmentation is a core prerequisite for the extraction of plant phenotypic traits at the organ level. Combining deep learning and point clouds can provide effective ways to address the challenge. However, fully supervised deep learning methods require datasets to be point-wise annotated, which is extremely expensive and time-consuming. In our work, we proposed a novel weakly supervised framework, Eff-3DPSeg, for 3D plant shoot segmentation. First, high-resolution point clouds of soybean were reconstructed using a low-cost photogrammetry system, and the Meshlab-based Plant Annotator was developed for plant point cloud annotation. Second, a weakly supervised deep learning method was proposed for plant organ segmentation. The method contained (a) pretraining a self-supervised network using Viewpoint Bottleneck loss to learn meaningful intrinsic structure representation from the raw point clouds and (b) fine-tuning the pretrained model with about only 0.5% points being annotated to implement plant organ segmentation. After, 3 phenotypic traits (stem diameter, leaf width, and leaf length) were extracted. To test the generality of the proposed method, the public dataset Pheno4D was included in this study. Experimental results showed that the weakly supervised network obtained similar segmentation performance compared with the fully supervised setting. Our method achieved 95.1%, 96.6%, 95.8%, and 92.2% in the precision, recall, F1 score, and mIoU for stem-leaf segmentation for the soybean dataset and 53%, 62.8%, and 70.3% in the AP, AP@25, and AP@50 for leaf instance segmentation for the Pheno4D dataset. This study provides an effective way for characterizing 3D plant architecture, which will become useful for plant breeders to enhance selection processes. The trained networks are available at https://github.com/jieyi-one/EFF-3DPSEG.

2.
Int J Numer Method Biomed Eng ; 37(6): e3457, 2021 06.
Article in English | MEDLINE | ID: mdl-33750033

ABSTRACT

Murine models have been widely used to investigate the mechanobiology of aortic atherosclerosis and dissections, which develop preferably at different anatomic locations of aorta. Based MRI and finite element analysis with fluid-structure interaction, we numerically investigated factors that may affect the blood flow and structural mechanics of rat aorta. The results indicated that aortic root motion greatly increases time-averaged wall shear stress (TAWSS), oscillatory shear index (OSI), relative residence time (RRT), displacement of the aorta, and enhances helical flow pattern but has limited influence on effective stress, which is highly modulated by blood pressure. Moreover, the influence of the motion component on these indicators is different with axial motion more obvious than planar motion. Surrounding fixation of the intercostal arteries and the branch vessels on aortic arch would reduce the influence of aortic root motion. The compliance of the aorta has different influences at different regions, leading to decrease in TAWSS and helical flow, increase in OSI, RRT at the aortic arch, but has reversed effects on the branch vessels. When compared with the steady flow, the pulsatile blood flow would obviously increase the WSS, the displacement, and the effective stress in most regions. In conclusion, to accurately quantify the blood flow and structural mechanics of rat aorta, the motion of the aortic root, the compliance of aortic wall, and the pulsation of blood flow should be considered. However, when only focusing on the effective stress in rat aorta, the motion of the aortic root may be neglected.


Subject(s)
Aorta, Thoracic , Hemodynamics , Animals , Aorta/diagnostic imaging , Aorta, Thoracic/diagnostic imaging , Blood Flow Velocity , Magnetic Resonance Imaging , Mice , Models, Cardiovascular , Rats , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...