Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Regen Ther ; 26: 114-123, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38883148

ABSTRACT

Introduction: Hair loss is one of the common clinical conditions in modern society. Although it is not a serious disease that threatens human life, it brings great mental stress and psychological burden to patients. This study investigated the role of dendrobium officinale polysaccharide (DOP) in hair follicle regeneration and hair growth and its related mechanisms. Methods: After in vitro culture of mouse antennal hair follicles and mouse dermal papilla cells (DPCs), and mouse vascular endothelial cells (MVECs), the effects of DOP upon hair follicles and cells were evaluated using multiple methods. DOP effects were evaluated by measuring tentacle growth, HE staining, immunofluorescence, Western blot, CCK-8, ALP staining, tube formation, scratch test, and Transwell. LDH levels, WNT signaling proteins, and therapeutic mechanisms were also analyzed. Results: DOP promoted tentacle hair follicle and DPCs growth in mice and the angiogenic, migratory and invasive capacities of MVECs. Meanwhile, DOP was also capable of enhancing angiogenesis and proliferation-related protein expression. Mechanistically, DOP activated the WNT signaling and promoted the expression level of ß-catenin, a pivotal protein of the pathway, and the pathway target proteins Cyclin D1, C-Myc, and LDH activity. The promotional effects of DOP on the biological functions of DPCs and MVECs could be effectively reversed by the WNT signaling pathway inhibitor IWR-1. Conclusion: DOP advances hair follicle and hair growth via the activation of the WNT signaling. This finding provides a mechanistic reference and theoretical basis for the clinical use of DOP in treating hair loss.

2.
Biochim Biophys Acta Mol Cell Res ; 1870(8): 119525, 2023 12.
Article in English | MEDLINE | ID: mdl-37348763

ABSTRACT

BACKGROUND: Psoriasis is a common inflammatory skin disease characterized by the excessive proliferation and abnormal differentiation of keratinocytes. Protein kinases could act on intracellular signaling pathways associated with cell proliferation. OBJECTIVE: Identifying more hub protein kinases affecting cellular and molecular processes in psoriasis, and exploring the dynamic effects of baicalin and NEK2 on the IL-22-induced cellular inflammation and IMQ-induced psoriasis-like mice. METHODS AND RESULTS: In this study, differentially expressed protein kinases playing a hub role in psoriasis initiation and development were identified using integrative bioinformatics analyses, and NEK2 has been chosen. NEK2 was significantly up-regulated in psoriatic samples according to online datasets and experimental analyses. In IL-22-induced cellular inflammation model in HaCaT cells, NEK2 overexpression promoted, whereas NEK2 knockdown partially abolished IL-22-induced alterations in cell viability, DNA synthesis, cytokine levels, as well as STAT3 phosphorylation and p-RB, cyclin D1, CDK4, and CDK6 protein contents. Baicalin treatment partially suppressed IL-22-induced HaCaT cell viability, DNA synthesis, and increases in cytokine levels, whereas NEK2 overexpression significantly abolished Baicalin-induced protection against cellular inflammation. In IMQ-induced psoriasis-like skin inflammation model in mice, baicalin markedly ameliorated IMQ-induced psoriasis-like symptoms and local skin inflammation, whereas NEK2 overexpression partially eliminated the therapeutic effects of baicalin. CONCLUSION: NEK2, up-regulated in psoriatic lesion skin, could aggravate IMQ-induced psoriasis-like dermatitis and attenuate the therapeutic efficiency of baicalin through promoting keratinocyte proliferation and cytokine levels. The STAT3 signaling might be involved.


Subject(s)
Dermatitis , Psoriasis , Animals , Mice , Cell Proliferation , Cytokines/metabolism , Dermatitis/drug therapy , Dermatitis/metabolism , Dermatitis/pathology , DNA , Imiquimod/adverse effects , Inflammation/metabolism , Keratinocytes/pathology , Protein Kinases/metabolism , Psoriasis/chemically induced , Psoriasis/genetics , Skin/pathology , Interleukin-22
3.
Aesthetic Plast Surg ; 47(2): 833-841, 2023 04.
Article in English | MEDLINE | ID: mdl-36470987

ABSTRACT

BACKGROUND: Androgenetic alopecia can affect up to 70% of males and 40% of females; however, certain therapeutic medications offer partial and transitory improvement but with major side effects. Dendrobium officinale polysaccharide (DOP) has been reported to improve androgen-related hair loss in mice, but the molecular mechanism remains unclear. OBJECTIVES: To explore the effects of DOP on androgenetic alopecia. METHODS: In this study, testosterone was subcutaneously administered to shave dorsa skin of mice to establish androgenetic alopecia; the effects of DOP in androgenetic alopecia were explored by DOP administration. RESULTS: Testosterone treatment extended the time of skin growing dark and hair growing, decreased the mean numbers of follicles in skin tissues, decreased ß-catenin and cyclin D1 levels, and elevated testosterone, DHT (dihydrotestosterone), and 5α-reductase levels. In contrast, DOP administration shortened skin growing dark and hair growing times, promoted follicle cell proliferation, increased follicle numbers, increased ß-catenin and cyclin D1 levels, and decreased testosterone, DHT, and 5α-reductase levels. CONCLUSION: DOP application significantly improved testosterone-induced hair follicle miniaturization and hair loss, possibly through affecting the Wnt signaling and hair follicle stem cell functions. NO LEVEL ASSIGNED: This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Subject(s)
Dendrobium , Testosterone , Male , Female , Mice , Animals , Testosterone/pharmacology , beta Catenin/pharmacology , Cyclin D1/pharmacology , Hair , Alopecia/chemically induced , Alopecia/drug therapy , Polysaccharides/pharmacology
4.
Article in English | MEDLINE | ID: mdl-34326883

ABSTRACT

Psoriasis is a chronic, recurrent, immunoinflammatory disease. For a long period, Traditional Chinese Medicine (TCM) is considered a reliable alternative therapy for patients with psoriasis. Fructus Kochiae (or Kochia scoparia) and its principle saponin, Momordin Ic, have been reported to protect against inflammation. Herein, we demonstrated that Momordin Ic could inhibit HaCaT cell proliferation and enhance cell apoptosis. In the meantime, Momordin Ic alters Wnt/ß-catenin pathway activation by affecting ß-catenin nuclear distribution. The Wnt/ß-catenin signaling activator LiCl partially reversed the effects of Momordin Ic on HaCaT phenotypes and the Wnt/ß-catenin pathway factors. Altogether, we demonstrate the inhibitory effects of Momordin Ic, one of the major saponin constituents of Fructus Kochiae, on HaCaT cell proliferation and Momordin Ic-induced alteration within the Wnt/ß-catenin pathway. Momordin Ic might act on HaCaT cells by modulating the Wnt/ß-catenin pathway.

5.
Cytokine ; 144: 155535, 2021 08.
Article in English | MEDLINE | ID: mdl-33994260

ABSTRACT

Psoriasis is a chronic immune-mediated inflammatory dermatosis. STAT3 has been considered a critical regulator of psoriasis pathogenesis due to its role in inflammation and immune responses. Furthermore, alongside non-coding RNAs, including long non-coding RNAs (lncRNAs) and miRNAs, STAT3 also plays a critical role in psoriasis pathogenesis. Two sets of online microarray profiles (GSE50790 and GSE13355) were subsequently downloaded and analyzed to search for lncRNAs upregulated in psoriasis lesion tissues. The expression of lncRNA SH3PXD2A-AS1 could be remarkably upregulated in psoriasis specimens. SH3PXD2A-AS1 silence was found to suppress HaCaT cell proliferation and promote HaCaT cell apoptosis significantly. Meanwhile, SH3PXD2A-AS1 silence significantly increased cleaved-caspase-3 protein levels and inhibited S100A7, TNF-α, IL-6, p-STAT3, STAT3, CyclinD1, and survivin protein levels. Moreover, the expression of miR-125b could be substantially decreased within psoriasis lesion tissue samples, while miR-125b could negatively regulate the SH3PXD2A-AS1 and STAT3 expression. As predicted by an online tool and validated by luciferase reporter and RIP assays, miR-125b was found to bind to SH3PXD2A-AS1 and STAT3 3'UTR directly; SH3PXD2A-AS1 competed with 3'UTR of STAT3 for miR-125b binding to counteract miR-125b-mediated suppression of STAT3. STAT3 is known to activate the transcription of SH3PXD2A-AS1 through the targeting of its promoter region. It consequentially forms a regulatory feedback loop promoting SH3PXD2A-AS1 expression affecting HaCat cell proliferation and apoptosis. A novel STAT3 related mechanism whereby STAT 3/ SH3PXD2A-AS1/ miR-125b/STAT3 positive feedback loop which could potentially affect the pathogenesis of Psoriasis has been established.


Subject(s)
Adaptor Proteins, Vesicular Transport/genetics , Cell Proliferation/genetics , Keratinocytes/pathology , MicroRNAs/genetics , Psoriasis/genetics , STAT3 Transcription Factor/genetics , 3' Untranslated Regions/genetics , Apoptosis/genetics , Cell Line , Cell Movement/genetics , Feedback , Gene Expression Regulation, Neoplastic/genetics , HEK293 Cells , HaCaT Cells , Humans , Psoriasis/pathology , RNA, Long Noncoding/genetics , Up-Regulation/genetics
6.
Cell Death Dis ; 12(1): 86, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33452236

ABSTRACT

Psoriasis is a chronic inflammatory disease of the skin with highly complex pathogenesis. In this study, we identified lncRNA SPRR2C (small proline-rich protein 2C) as a hub gene with a critical effect on the pathogenesis of psoriasis and response to treatment using both weighted gene coexpression network analysis (WGCNA) and differential expression analysis. SPRR2C expression was significantly upregulated in both psoriatic lesion samples and HaCaT cell lines in response to IL-22 treatment. After SPRR2C knockdown, IL-22-induced suppression of HaCaT proliferation, changes in the KRT5/14/1/10 protein levels, and suppression of the IL-1ß, IL-6, and TNF-α mRNA levels were dramatically reversed. In the coexpression network with SPRR2C based on GSE114286, miR-330 was significantly negatively correlated with SPRR2C, while STAT1 and S100A7 were positively correlated with SPRR2C. By binding to miR-330, SPRR2C competed with STAT1 and S100A7 to counteract miR-330-mediated suppression of STAT1 and S100A7. MiR-330 overexpression also reversed the IL-22-induced changes in HaCaT cell lines; in response to IL-22 treatment, miR-330 inhibition significantly attenuated the effects of SPRR2C knockdown. STAT1 and S100A7 expression was significantly upregulated in psoriatic lesion samples. The expression of miR-330 had a negative correlation with the expression of SPRR2C, while the expression of SPRR2C had a positive correlation with the expression of STAT1 and S100A7. Thus, SPRR2C modulates the IL-22-stimulated HaCaT cell phenotype through the miR-330/STAT1/S100A7 axis. WGCNA might uncover additional biological pathways that are crucial in the pathogenesis and response to the treatment of psoriasis.


Subject(s)
Cornified Envelope Proline-Rich Proteins/genetics , Cornified Envelope Proline-Rich Proteins/metabolism , Interleukins/pharmacology , MicroRNAs/metabolism , RNA, Long Noncoding/metabolism , STAT1 Transcription Factor/metabolism , Gene Expression , Gene Regulatory Networks , HaCaT Cells , Humans , MicroRNAs/genetics , Phenotype , Psoriasis/genetics , Psoriasis/metabolism , Psoriasis/pathology , RNA, Long Noncoding/biosynthesis , RNA, Long Noncoding/genetics , STAT1 Transcription Factor/genetics , Transfection , Interleukin-22
7.
Cell Cycle ; 19(15): 1928-1940, 2020 08.
Article in English | MEDLINE | ID: mdl-32594829

ABSTRACT

Psoriasis is an immune-mediated chronic inflammatory skin disease. Keratinocyte hyperproliferation has been regarded as a significant event in psoriasis pathogenesis. Considering the vital role of miRNA-mediated mRNA repression in psoriasis pathogenesis, in the present study, we attempted to investigate the mechanism of keratinocyte overproliferation from the point of miRNA-mRNA regulation. Both online microarray expression profiles and experimental results indicated that the expression of LXR-α and PPAR-γ was downregulated in psoriasis lesion skin. LXR-α or PPAR-γ overexpression alone was sufficient to inhibit keratinocyte proliferation, decrease KRT5 and KRT14 protein levels and increase KRT1 and KRT10 protein levels. miR-203 negatively regulated LXR-α and PPAR-γ expression through direct targeting. miR-203 inhibition exerted the opposite effects to LXR-α or PPAR-γ overexpression on HaCaT cells. More importantly, LXR-α or PPAR-γ overexpression could markedly remarkably attenuate the effects of miR-203 overexpression in keratinocytes, indicating that miR-203 promotes keratinocyte proliferation by targeting LXR-α and PPAR-γ. In conclusion, the miR-203-LXR-α/PPAR-γ axis modulates the proliferation of keratinocytes and might be a novel target for psoriasis treatment, which needs further in vivo investigation.


Subject(s)
HaCaT Cells/cytology , HaCaT Cells/metabolism , Liver X Receptors/metabolism , MicroRNAs/metabolism , PPAR gamma/metabolism , Cell Proliferation/genetics , Humans , Keratinocytes/metabolism , Keratinocytes/pathology , MicroRNAs/genetics , Psoriasis/genetics , Psoriasis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...