Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37907829

ABSTRACT

Polymer dots (PDs) have raised considerable research interest due to their advantages of designable nanostructures, high biocompatibility, versatile photoluminescent properties, and recyclability as nanophase. However, there remains a lack of in situ, real-time, and noncontact methods for synthesizing PDs. Here we report a rational strategy to synthesize PDs through a well-designed single-component precursor (an asymmetrical donor-acceptor-donor' molecular structure) by photoirradiation at ambient temperature. In contrast to thermal processes that normally lack atomic economy, our method is mild and successive, based on an aggregation-promoted sulfonimidization triggered by photoinduced delocalized intrinsic radical cations for polymerization, followed by photooxidation for termination with structural shaping to form PDs. This synthetic approach excludes any external additives, rendering a conversion rate of the precursor exceeding 99%. The prepared PDs, as a single entity, can realize the integration of nanocore luminescence and precursor-transferred luminescence, showing 41.5% of the total absolute luminescence quantum efficiency, which is higher than most reported PD cases. Based on these photoluminescent properties, together with the superior biocompatibility, a unique membrane microenvironmental biodetection could be exemplified. This strategy with programming control of the single precursor can serve as a significant step toward polymer nanomanufacturing with remote control, high-efficiency, precision, and real-time operability.

2.
Angew Chem Int Ed Engl ; 61(43): e202209777, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36066473

ABSTRACT

Controlling phase separation and transition plays a core role in establishing and maintaining the function of diverse self-assembled systems. However, it remains challenging to achieve wide-range continuous phase transition for dynamically producing a variety of assembled structures. Here, we developed a far-from-equilibrium system, upon the integration of photoexcitation-induced aggregation molecules and block copolymers, to establish an in situ phase-volume ratio photocontrol strategy. Thus, full-scale phase-diagram structures, from lamellar structure to gyroidal, cylindrical, and finally to a spherical one, can be accessed under different irradiation periods. Moreover, the phase transition was accompanied by considerable aggregation-induced phosphorescence and hydrophilicity/hydrophobicity change for building a functional surface. This strategy allows for a conceptual advance of accessing a wide range of distinct self-assembled structures and functions in real time.

3.
Angew Chem Int Ed Engl ; 59(39): 17018-17025, 2020 09 21.
Article in English | MEDLINE | ID: mdl-32701183

ABSTRACT

The fact that the lifetime of photoluminescence is often difficult to access because of the weakness of the emission signals, seriously limits the possibility to gain local bioimaging information in time-resolved luminescence probing. We aim to provide a solution to this problem by creating a general photophysical strategy based on the use of molecular probes designed for single-luminophore dual thermally activated delayed fluorescence (TADF). The structural and conformational design makes the dual TADF strong in both diluted solution and in an aggregated state, thereby reducing sensitivity to oxygen quenching and enabling a unique dual-channel time-resolved imaging capability. As the two TADF signals show mutual complementarity during probing, a dual-channel means that lifetime mapping is established to reduce the time-resolved imaging distortion by 30-40 %. Consequently, the leading intracellular local imaging information is serialized and integrated, which allows comparison to any single time-resolved signal, and leads to a significant improvement of the probing capacity.

4.
Angew Chem Int Ed Engl ; 59(19): 7548-7554, 2020 05 04.
Article in English | MEDLINE | ID: mdl-32073698

ABSTRACT

Developing luminescent probes with long lifetime and high emission efficiency is essential for time-resolved imaging. However, the practical applications usually suffer from emission quenching of traditional luminogens in aggregated states, or from weak emission of aggregation-induced emission type luminogens in monomeric states. Herein, we overcome this dilemma by a rigid-and-flexible alternation design in donor-acceptor-donor skeletons, to achieve a thermally activated delayed fluorescence luminogen with high emission efficiency both in the monomeric state (quantum yield up to 35.3 %) and in the aggregated state (quantum yield up to 30.8 %). Such a dual-phase strong and long-lived emission allows a time-resolved luminescence imaging, with an efficiency independent of probe pretreatment and probe concentration. The findings open opportunities for developing luminescent probes with a usage in larger temporal and spatial scales.

5.
PLoS One ; 14(8): e0220500, 2019.
Article in English | MEDLINE | ID: mdl-31381583

ABSTRACT

Aberrant DNA methylation patterns are common in cancers and environmental pollutant exposed subjects. Up to date, few studies have examined the aberrant DNA methylation patterns in benzene exposed workers. We recruited 141 benzene-exposed workers, including 83 benzene-exposed workers from a shoe factory in Wenzhou and 58 workers from a painting workshop in Wuhu, 35 workers in Wuhu were followed from 2009 to 2013, and 48 indoor workers as controls from Wenzhou. We used high-resolution melting (HRM) to quantitate human samples of DNA methylation in long interspersed nuclear element-1 (LINE-1), (6)-methylguanine-DNA methyltransferase (MGMT), and DNA mismatch repair gene human mutator L homologue 1 (hMLH1). AML-5 cells were treated with benzoquinone (BQ) and hydroquinone (HQ), and the promoter methylation of MGMT and hMLH1 was detected using the bisulfite sequencing PCR method. The degree of LINE-1 methylation in benzene-exposed workers was significantly lower than that of the controls (p<0.001), and the degree of MGMT (p<0.001) and hMLH1 (p = 0.01) methylation was significantly higher than that of the controls. The in vitro study validated the aberrant hypermethylation of hMLH1 after treatment with BQ. Among the cohort workers who were followed from 2009 to 2013, the LINE1 methylation elevated in 2013 than 2009 (p = 0.004), and premotor methylation in hMLH1 reduced in 2013 than 2009 (p = 0.045) with the reduction of the benzene exposure. This study provides evidence that benzene exposure can induce LINE-1 hypomethylation and DNA repair gene hypermethylation.


Subject(s)
Benzene/adverse effects , DNA Methylation/drug effects , Environmental Pollutants/adverse effects , Occupational Exposure/adverse effects , Promoter Regions, Genetic/drug effects , Adolescent , Adult , Aged , Cell Line , Female , Humans , Long Interspersed Nucleotide Elements/drug effects , Male , Middle Aged , MutL Protein Homolog 1/genetics , O(6)-Methylguanine-DNA Methyltransferase/genetics , Occupational Exposure/analysis , Young Adult
6.
Article in English | MEDLINE | ID: mdl-30744808

ABSTRACT

OBJECTIVE: The base excision repair (BER) pathway and nucleotide excision repair (NER) pathway play important roles in the repair of benzene-induced genetic damage, and the effects of polymorphisms in these pathways on genetic damage and global DNA methylation are of great interest. METHODS: Ten single nucleotide polymorphisms (SNPs) in the BER (XRCC1: rs25489, rs25487; APE1: rs1130409) and NER pathways (XPA: rs1800975; XPC: rs2228000, rs2228002; XPD: rs13181, rs1799793; XPG: rs17655; ERCC1: rs3212986) were analyzed by a Kompetitive allele-specific PCR (KASP) assay to find associations with cytokinesis-block micronucleus (MN) frequency and global DNA methylation in 294 shoe factory workers and 102 control participants. RESULTS: Workers who possessed the following genotypes were associated with high MN frequency: rs25487 AA (FR (95% CI): 1.50 (1.16,1.9), p = 0.002, reference GG); rs1130409 GG (FR (95% CI): 1.28 (1.05,1.55), p = 0.010, reference TT); rs17655 GC (FR (95% CI): 1.18 (1.02,1.38), p = 0.038, reference GG); and rs3212986 TT (FR (95% CI): 1.55 (1.31,1.83), p < 0.001, reference GG). Workers with four and three mutant alleles showed 3.72-fold (OR (95% CI): 3.72 (1.34, 10.03), p = 0.009) and 2.48-fold (OR (95% CI): 2.48 (1.27, 4.88), p = 0.008) increased risk of genetic damage compared with workers with no or one mutant allele, and a dose-response relationship was found by the trend test (p = 0.006). The rs1130409 variant allele (GG+GT) was associated with low global DNA methylation (ß=-0.20, 95% CI: -0.42, 0.03, p = 0.045). CONCLUSION: In benzene-exposed workers, BER and NER pathway polymorphism haplotypes are associated with different levels of chromosome damage and had little effect on global DNA methylation.


Subject(s)
Benzene/adverse effects , Biomarkers/analysis , DNA Damage , DNA Methylation , DNA Repair , Occupational Exposure/adverse effects , Polymorphism, Single Nucleotide , X-ray Repair Cross Complementing Protein 1/metabolism , Adult , Case-Control Studies , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , DNA-Binding Proteins/genetics , Endonucleases/genetics , Genome, Human , Haplotypes , Humans , Male , Micronucleus Tests , Nuclear Proteins/genetics , Prognosis , Transcription Factors/genetics , X-ray Repair Cross Complementing Protein 1/genetics , Xeroderma Pigmentosum Group A Protein/genetics , Xeroderma Pigmentosum Group D Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...