Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
Viruses ; 16(4)2024 04 16.
Article in English | MEDLINE | ID: mdl-38675960

ABSTRACT

Reactivation and infection with cytomegalovirus (CMV) are frequently observed in recipients of solid organ transplants, bone marrow transplants, and individuals with HIV infection. This presents an increasing risk of allograft rejection, opportunistic infection, graft failure, and patient mortality. Among immunocompromised hosts, interstitial pneumonia is the most critical clinical manifestation of CMV infection. Recent studies have demonstrated the potential therapeutic benefits of exosomes derived from mesenchymal stem cells (MSC-exos) in preclinical models of acute lung injury, including pneumonia, ARDS, and sepsis. However, the role of MSC-exos in the pathogenesis of infectious viral diseases, such as CMV pneumonia, remains unclear. In a mouse model of murine CMV-induced pneumonia, we observed that intravenous administration of mouse MSC (mMSC)-exos reduced lung damage, decreased the hyperinflammatory response, and shifted macrophage polarization from the M1 to the M2 phenotype. Treatment with mMSC-exos also significantly reduced the infiltration of inflammatory cells and pulmonary fibrosis. Furthermore, in vitro studies revealed that mMSC-exos reversed the hyperinflammatory phenotype of bone marrow-derived macrophages infected with murine CMV. Mechanistically, mMSC-exos treatment decreased activation of the NF-κB/NLRP3 signaling pathway both in vivo and in vitro. In summary, our findings indicate that mMSC-exo treatment is effective in severe CMV pneumonia by reducing lung inflammation and fibrosis through the NF-κB/NLRP3 signaling pathway, thus providing promising therapeutic potential for clinical CMV infection.


Subject(s)
Disease Models, Animal , Exosomes , Mesenchymal Stem Cells , Muromegalovirus , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Signal Transduction , Animals , Exosomes/metabolism , Mesenchymal Stem Cells/metabolism , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NF-kappa B/metabolism , Muromegalovirus/physiology , Mice, Inbred C57BL , Macrophages/immunology , Cytomegalovirus Infections/therapy , Cytomegalovirus Infections/virology , Lung/virology , Lung/pathology , Pneumonia, Viral/therapy , Pneumonia, Viral/virology , Herpesviridae Infections/therapy , Herpesviridae Infections/virology , Herpesviridae Infections/immunology , Pneumonia/therapy , Pneumonia/virology
2.
PLoS Pathog ; 20(4): e1012141, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38626263

ABSTRACT

Kaposi's sarcoma-associated herpesvirus (KSHV) is a double-stranded DNA virus etiologically associated with multiple malignancies. Both latency and sporadic lytic reactivation contribute to KSHV-associated malignancies, however, the specific roles of many KSHV lytic gene products in KSHV replication remain elusive. In this study, we report that ablation of ORF55, a late gene encoding a tegument protein, does not impact KSHV lytic reactivation but significantly reduces the production of progeny virions. We found that cysteine 10 and 11 (C10 and C11) of pORF55 are palmitoylated, and the palmytoilation is essential for its Golgi localization and secondary envelope formation. Palmitoylation-defective pORF55 mutants are unstable and undergo proteasomal degradation. Notably, introduction of a putative Golgi localization sequence to these palmitoylation-defective pORF55 mutants restores Golgi localization and fully reinstates KSHV progeny virion production. Together, our study provides new insight into the critical role of pORF55 palmitoylation in KSHV progeny virion production and offers potential therapeutic targets for the treatment of related malignancies.


Subject(s)
Golgi Apparatus , Herpesvirus 8, Human , Lipoylation , Viral Proteins , Virion , Virus Replication , Herpesvirus 8, Human/physiology , Herpesvirus 8, Human/metabolism , Golgi Apparatus/metabolism , Golgi Apparatus/virology , Humans , Virion/metabolism , Viral Proteins/metabolism , Viral Proteins/genetics , Virus Replication/physiology , HEK293 Cells
4.
PLoS Pathog ; 19(5): e1011304, 2023 05.
Article in English | MEDLINE | ID: mdl-37146061

ABSTRACT

Human cytomegalovirus (HCMV) infection is associated with human glioblastoma, the most common and aggressive primary brain tumor, but the underlying infection mechanism has not been fully demonstrated. Here, we show that EphA2 was upregulated in glioblastoma and correlated with the poor prognosis of the patients. EphA2 silencing inhibits, whereas overexpression promotes HCMV infection, establishing EphA2 as a crucial cell factor for HCMV infection of glioblastoma cells. Mechanistically, EphA2 binds to HCMV gH/gL complex to mediate membrane fusion. Importantly, the HCMV infection was inhibited by the treatment of inhibitor or antibody targeting EphA2 in glioblastoma cells. Furthermore, HCMV infection was also impaired in optimal glioblastoma organoids by EphA2 inhibitor. Taken together, we propose EphA2 as a crucial cell factor for HCMV infection in glioblastoma cells and a potential target for intervention.


Subject(s)
Cytomegalovirus Infections , Glioblastoma , Receptor, EphA2 , Humans , Viral Envelope Proteins/metabolism , Glioblastoma/genetics , Cytomegalovirus/physiology , Receptor, EphA2/genetics
5.
PLoS Pathog ; 19(4): e1011316, 2023 04.
Article in English | MEDLINE | ID: mdl-37058447

ABSTRACT

The presence of human cytomegalovirus (HCMV) in glioblastoma (GBM) and improved outcomes of GBM patients receiving therapies targeting the virus have implicated HCMV in GBM progression. However, a unifying mechanism that accounts for the contribution of HCMV to the malignant phenotype of GBM remains incompletely defined. Here we have identified SOX2, a marker of glioma stem cells (GSCs), as a key determinant of HCMV gene expression in gliomas. Our studies demonstrated that SOX2 downregulated promyelocytic leukemia (PML) and Sp100 and consequently facilitated viral gene expression by decreasing the amount of PML nuclear bodies in HCMV-infected glioma cells. Conversely, the expression of PML antagonized the effects of SOX2 on HCMV gene expression. Furthermore, this regulation of SOX2 on HCMV infection was demonstrated in a neurosphere assay of GSCs and in a murine xenograft model utilizing xenografts from patient-derived glioma tissue. In both cases, SOX2 overexpression facilitated the growth of neurospheres and xenografts implanted in immunodeficient mice. Lastly, the expression of SOX2 and HCMV immediate early 1 (IE1) protein could be correlated in tissues from glioma patients, and interestingly, elevated levels of SOX2 and IE1 were predictive of a worse clinical outcome. These studies argue that HCMV gene expression in gliomas is regulated by SOX2 through its regulation of PML expression and that targeting molecules in this SOX2-PML pathway could identify therapies for glioma treatment.


Subject(s)
Glioma , Immediate-Early Proteins , Animals , Humans , Mice , Cytomegalovirus/physiology , Down-Regulation , Gene Expression , Glioma/genetics , Glioma/pathology , Immediate-Early Proteins/metabolism , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
6.
J Virol ; 97(5): e0031323, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37097169

ABSTRACT

Human cytomegalovirus (HCMV) is a leading cause of congenital birth defects. Though the underlying mechanisms remain poorly characterized, mouse models of congenital CMV infection have demonstrated that the neuronal migration process is damaged. In this study, we evaluated the effects of HCMV infection on connexin 43 (Cx43), a crucial adhesion molecule mediating neuronal migration. We show in multiple cellular models that HCMV infection downregulated Cx43 posttranslationally. Further analysis identified the immediate early protein IE1 as the viral protein responsible for the reduction of Cx43. IE1 was found to bind the Cx43 C terminus and promote Cx43 degradation through the ubiquitin-proteasome pathway. Deletion of the Cx43-binding site in IE1 rendered it incapable of inducing Cx43 degradation. We validated the IE1-induced loss of Cx43 in vivo by introducing IE1 into the fetal mouse brain. Noteworthily, ectopic IE1 expression induced cortical atrophy and neuronal migration defects. Several lines of evidence suggest that these damages result from decreased Cx43, and restoration of Cx43 levels partially rescued IE1-induced interruption of neuronal migration. Taken together, the results of our investigation reveal a novel mechanism of HCMV-induced neural maldevelopment and identify a potential intervention target. IMPORTANCE Congenital CMV (cCMV) infection causes neurological sequelae in newborns. Recent studies of cCMV pathogenesis in animal models reveal ventriculomegaly and cortical atrophy associated with impaired neural progenitor cell (NPC) proliferation and migration. In this study, we investigated the mechanisms underlying these NPC abnormalities. We show that Cx43, a critical adhesion molecule mediating NPC migration, is downregulated by HCMV infection in vitro and HCMV-IE1 in vivo. We provide evidence that IE1 interacts with the C terminus of Cx43 to promote its ubiquitination and consequent degradation through the proteasome. Moreover, we demonstrate that introducing IE1 into mouse fetal brains led to neuronal migration defects, which was associated with Cx43 reduction. Deletion of the Cx43-binding region in IE1 or ectopic expression of Cx43 rescued the IE1-induced migration defects in vivo. Our study provides insight into how cCMV infection impairs neuronal migration and reveals a target for therapeutic interventions.


Subject(s)
Connexin 43 , Cytomegalovirus Infections , Cytomegalovirus , Immediate-Early Proteins , Animals , Humans , Infant, Newborn , Mice , Connexin 43/genetics , Connexin 43/metabolism , Cytomegalovirus/physiology , Cytomegalovirus Infections/metabolism , Immediate-Early Proteins/genetics , Immediate-Early Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism
7.
Mol Neurodegener ; 18(1): 23, 2023 04 14.
Article in English | MEDLINE | ID: mdl-37060096

ABSTRACT

BACKGROUND: Abnormal tau accumulation and cholinergic degeneration are hallmark pathologies in the brains of patients with Alzheimer's disease (AD). However, the sensitivity of cholinergic neurons to AD-like tau accumulation and strategies to ameliorate tau-disrupted spatial memory in terms of neural circuits still remain elusive. METHODS: To investigate the effect and mechanism of the cholinergic circuit in Alzheimer's disease-related hippocampal memory, overexpression of human wild-type Tau (hTau) in medial septum (MS)-hippocampus (HP) cholinergic was achieved by specifically injecting pAAV-EF1α-DIO-hTau-eGFP virus into the MS of ChAT-Cre mice. Immunostaining, behavioral analysis and optogenetic activation experiments were used to detect the effect of hTau accumulation on cholinergic neurons and the MS-CA1 cholinergic circuit. Patch-clamp recordings and in vivo local field potential recordings were used to analyze the influence of hTau on the electrical signals of cholinergic neurons and the activity of cholinergic neural circuit networks. Optogenetic activation combined with cholinergic receptor blocker was used to detect the role of cholinergic receptors in spatial memory. RESULTS: In the present study, we found that cholinergic neurons with an asymmetric discharge characteristic in the MS-hippocampal CA1 pathway are vulnerable to tau accumulation. In addition to an inhibitory effect on neuronal excitability, theta synchronization between the MS and CA1 subsets was significantly disrupted during memory consolidation after overexpressing hTau in the MS. Photoactivating MS-CA1 cholinergic inputs within a critical 3 h time window during memory consolidation efficiently improved tau-induced spatial memory deficits in a theta rhythm-dependent manner. CONCLUSIONS: Our study not only reveals the vulnerability of a novel MS-CA1 cholinergic circuit to AD-like tau accumulation but also provides a rhythm- and time window-dependent strategy to target the MS-CA1 cholinergic circuit, thereby rescuing tau-induced spatial cognitive functions.


Subject(s)
Alzheimer Disease , Memory Consolidation , Animals , Humans , Mice , Alzheimer Disease/metabolism , Cholinergic Agents/metabolism , Cholinergic Agents/pharmacology , Cholinergic Neurons , Hippocampus/metabolism , Memory Disorders/metabolism , tau Proteins/metabolism
8.
Virol Sin ; 38(3): 373-379, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36940800

ABSTRACT

Herpes simplex virus type 1 (HSV-1) causes lifelong infections worldwide, and currently there is no efficient cure or vaccine. HSV-1-derived tools, such as neuronal circuit tracers and oncolytic viruses, have been used extensively; however, further genetic engineering of HSV-1 is hindered by its complex genome structure. In the present study, we designed and constructed a synthetic platform for HSV-1 based on H129-G4. The complete genome was constructed from 10 fragments through 3 rounds of synthesis using transformation-associated recombination (TAR) in yeast, and was named H129-Syn-G2. The H129-Syn-G2 genome contained two copies of the gfp gene and was transfected into cells to rescue the virus. According to growth curve assay and electron microscopy results, the synthetic viruses exhibited more optimized growth properties and similar morphogenesis compared to the parental virus. This synthetic platform will facilitate further manipulation of the HSV-1 genome for the development of neuronal circuit tracers, oncolytic viruses, and vaccines.


Subject(s)
Herpesvirus 1, Human , Herpesvirus 1, Human/genetics , Neurons
9.
PLoS Pathog ; 19(2): e1011166, 2023 02.
Article in English | MEDLINE | ID: mdl-36753521

ABSTRACT

Congenital human cytomegalovirus (HCMV) infection causes severe damage to the fetal brain, and the underlying mechanisms remain elusive. Cytokine signaling is delicately controlled in the fetal central nervous system to ensure proper development. Here we show that suppressor of cytokine signaling 3 (SOCS3), a negative feedback regulator of the IL-6 cytokine family signaling, was upregulated during HCMV infection in primary neural progenitor cells (NPCs) with a biphasic expression pattern. From viral protein screening, pUL97 emerged as the viral factor responsible for prolonged SOCS3 upregulation. Further, by proteomic analysis of the pUL97-interacting host proteins, regulatory factor X 7 (RFX7) was identified as the transcription factor responsible for the regulation. Depletion of either pUL97 or RFX7 prevented the HCMV-induced SOCS3 upregulation in NPCs. With a promoter-luciferase activity assay, we demonstrated that the pUL97 kinase activity and RFX7 were required for SOCS3 upregulation. Moreover, the RFX7 phosphorylation level was increased by either UL97-expressing or HCMV-infection in NPCs, suggesting that pUL97 induces RFX7 phosphorylation to drive SOCS3 transcription. We further revealed that elevated SOCS3 expression impaired NPC proliferation and migration in vitro and caused NPCs migration defects in vivo. Taken together, these findings uncover a novel regulatory mechanism of sustained SOCS3 expression in HCMV-infected NPCs, which perturbs IL-6 cytokine family signaling, leads to NPCs proliferation and migration defects, and consequently affects fetal brain development.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Humans , Cytomegalovirus/physiology , Interleukin-6/metabolism , Proteomics , Transcription Factors/metabolism , Stem Cells , Suppressor of Cytokine Signaling 3 Protein/metabolism
10.
J Med Virol ; 95(2): e28574, 2023 02.
Article in English | MEDLINE | ID: mdl-36772841

ABSTRACT

Human cytomegalovirus (HCMV) preferentially targets neural progenitor cells (NPCs) in congenitally infected fetal brains, inducing neurodevelopmental disorders. While HCMV expresses several microRNAs (miRNAs) during infection, their roles in NPC infection are unclear. Here, we characterized expression of cellular and viral miRNAs in HCMV-infected NPCs during early infection by microarray and identified seven differentially expressed cellular miRNAs and six significantly upregulated HCMV miRNAs. Deep learning approaches were used to identify potential targets of significantly upregulated HCMV miRNAs against differentially expressed cellular messenger RNA (mRNAs), and the associations with miRNA-mRNA expression changes were observed. Gene ontology enrichment analysis indicated cellular gene targets were significantly enriched in pathways involved in neurodevelopment and cell-cycle processes. Viral modulation of selected miRNAs and cellular gene targets involved in neurodevelopmental processes were further validated by real-time quantitative reverse transcription polymerase chain reaction. Finally, a predicted 3' untranslated region target site of hcmv-miR-US25-1 in Jag1, a factor important for neurogenesis, was confirmed by mutagenesis. Reduction of Jag1 RNA and protein levels in NPCs was observed in response to transient expression of hcmv-miR-US25-1. A hcmv-miR-US25-1 mutant virus (ΔmiR-US25) displayed limited ability to downregulate Jag1 mRNA levels and protein levels during the early infection stage compared with the wild type virus. Our collective experimental and computational investigation of miRNAs and cellular mRNAs expression in HCMV-infected NPCs yields new insights into the roles of viral miRNAs in regulating NPC fate and their contributions to HCMV neuropathogenesis.


Subject(s)
Cytomegalovirus Infections , MicroRNAs , Humans , MicroRNAs/genetics , Cytomegalovirus/genetics , Stem Cells/metabolism
11.
Nat Commun ; 13(1): 7645, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36496505

ABSTRACT

Monosynaptic viral tracers are essential tools for dissecting neuronal connectomes and for targeted delivery of molecular sensors and effectors. Viral toxicity and complex multi-injection protocols are major limiting application barriers. To overcome these barriers, we developed an anterograde monosynaptic H129Amp tracer system based on HSV-1 strain H129. The H129Amp tracer system consists of two components: an H129-dTK-T2-pacFlox helper which assists H129Amp tracer's propagation and transneuronal monosynaptic transmission. The shared viral features of tracer/helper allow for simultaneous single-injection and subsequent high expression efficiency from multiple-copy of expression cassettes in H129Amp tracer. These improvements of H129Amp tracer system shorten experiment duration from 28-day to 5-day for fast-bright monosynaptic tracing. The lack of toxic viral genes in the H129Amp tracer minimizes toxicity in postsynaptic neurons, thus offering the potential for functional anterograde mapping and long-term tracer delivery of genetic payloads. The H129Amp tracer system is a powerful tracing tool for revealing neuronal connectomes.


Subject(s)
Connectome , Nerve Net , Herpesvirus 1, Human/genetics , Neurons
12.
J Med Virol ; 94(11): 5492-5506, 2022 11.
Article in English | MEDLINE | ID: mdl-35879101

ABSTRACT

During the long coevolution of human cytomegalovirus (HCMV) and humans, the host has formed a defense system of multiple layers to eradicate the invader, and the virus has developed various strategies to evade host surveillance programs. The intrinsic immunity primarily orchestrated by promyelocytic leukemia (PML) nuclear bodies (PML-NBs) represents the first line of defense against HCMV infection. Here, we demonstrate that microrchidia family CW-type zinc finger 3 (MORC3), a PML-NBs component, is a restriction factor targeting HCMV infection. We show that depletion of MORC3 through knockdown by RNA interference or knockout by CRISPR-Cas9 augmented immediate-early protein 1 (IE1) gene expression and subsequent viral replication, and overexpressing MORC3 inhibited HCMV replication by suppressing IE1 gene expression. To relief the restriction, HCMV induces transient reduction of MORC3 protein level via the ubiquitin-proteasome pathway during the immediate-early to early stage. However, MORC3 transcription is upregulated, and the protein level recovers in the late stages. Further analyses with temporal-controlled MORC3 expression and the major immediate-early promoter (MIEP)-based reporters show that MORC3 suppresses MIEP activity and consequent IE1 expression with the assistance of PML. Taken together, our data reveal that HCMV enforces temporary loss of MORC3 to evade its repression against the initiation of immediate-early gene expression.


Subject(s)
Cytomegalovirus Infections , Immediate-Early Proteins , Adenosine Triphosphatases/metabolism , Cytomegalovirus/genetics , DNA-Binding Proteins/metabolism , Humans , Immediate-Early Proteins/genetics , Immediate-Early Proteins/metabolism , Promyelocytic Leukemia Protein/genetics , Promyelocytic Leukemia Protein/metabolism , Virus Replication
13.
Microbiol Spectr ; 10(3): e0186421, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35467404

ABSTRACT

Autism spectrum disorder (ASD), a highly hereditary and heterogeneous neurodevelopmental disorder, is influenced by genetic and environmental factors. Tuberous sclerosis complex (TSC) is a common syndrome associated with ASD. Cytomegalovirus (CMV) infection is an environmental risk factor for ASD. The similarities in pathological and mechanistic pathways of TSC and CMV intrigued us to investigate whether CMV and TSC interacted in ASD's occurrence. We detected CMV IgG seroprevalence of 308 TSC patients from our prospective cohort (September 2011 to March 2021) and 93 healthy children by magnetic particle indirect chemiluminescence immunoassay. A total of 206 TSC patients enrolled were divided into ASD and non-ASD groups, and the relationship between ASD and CMV seroprevalence was analyzed. Nested PCR and Western blot were used to detect CMV DNAs and proteins in cortical malformations of seven TSC patients with and without ASD. No difference was found in CMV seroprevalence between TSC patients and healthy children (74.0% versus 72.0%, P = 0.704). Univariate analysis showed the seroprevalence in TSC patients with ASD was higher than that in TSC patients without ASD (89.2% versus 75.1%, P = 0.063), and multifactorial analysis showed that CMV seroprevalence was a risk factor for ASD in TSC patients (OR = 3.976, 95% CI = 1.093 to 14.454). Moreover, CMV was more likely to be detected in the cortical malformations in TSC patients with ASD but not in those without ASD. The findings demonstrated that CMV may increase the susceptibility of TSC to ASD. IMPORTANCE CMV is an environmental risk factor for ASD, but its role in syndromic autism with known genetic etiology has been rarely studied. The pathogenesis of ASD is related to the interaction between environmental and genetic factors. This study demonstrated that CMV can contribute to the occurrence of ASD related to TSC, a common genetic syndrome associated with ASD. Our findings provided support for the theory of gene-environment interaction (G × E) in pathogenesis of ASD and a new perspective for the prevention and therapy for TSC related ASD.


Subject(s)
Autism Spectrum Disorder , Cytomegalovirus Infections , Tuberous Sclerosis , Autism Spectrum Disorder/complications , Autism Spectrum Disorder/etiology , Child , Cytomegalovirus/genetics , Cytomegalovirus Infections/complications , Cytomegalovirus Infections/epidemiology , Humans , Prospective Studies , Seroepidemiologic Studies , Tuberous Sclerosis/complications , Tuberous Sclerosis/epidemiology , Tuberous Sclerosis/genetics
14.
J Virol ; 96(5): e0182721, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35020472

ABSTRACT

Human cytomegalovirus (HCMV) has a large (∼235 kb) genome with more than 200 predicted open reading frames that exploits numerous cellular factors to facilitate its replication. A key feature of HCMV-infected cells is the emergence of a distinctive membranous cytoplasmic compartment termed the virion assembly compartment (vAC). Here, we report that host protein WD repeat domain 11 (WDR11) plays a key role in vAC formation and virion morphogenesis. We found that WDR11 was upregulated at both mRNA and protein levels during HCMV infection. At the late stage of HCMV replication, WDR11 relocated to the vAC and colocalized with markers of the trans-Golgi network (TGN) and vAC. Depletion of WDR11 hindered HCMV-induced membrane reorganization of the Golgi and TGN, altered vAC formation, and impaired HCMV secondary envelopment and virion morphogenesis. Further, motifs critical for the localization of WDR11 in TGN were identified by alanine-scanning mutagenesis. Mutation of these motifs led to WDR11 mislocation outside the TGN and loss of vAC formation. Taken together, these data indicate that host protein WDR11 is required for efficient viral replication at the stage of virion assembly, possibly by facilitating the remodeling of the endomembrane system for vAC formation and virion morphogenesis. IMPORTANCE During the late phase of human cytomegalovirus (HCMV) infection, the endomembrane system is dramatically reorganized, resulting in the formation of a unique structure termed the virion assembly compartment (vAC), which is critical for the assembly of infectious virions. The mechanism of HCMV-induced vAC formation is still not fully understood. In this report, we identified a host factor, WDR11, that plays an important role in vAC formation. Our findings argue that WDR11 contributes to the relocation of the Golgi and trans-Golgi network to the vAC, a membrane reorganization process that appears to be required for efficient virion maturation. The present work provides new insights into the vAC formation and HCMV virion morphogenesis and a potential novel target for antiviral treatment.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Host Microbial Interactions , WD40 Repeats , Cytomegalovirus/genetics , Cytomegalovirus/metabolism , Cytomegalovirus Infections/physiopathology , Cytomegalovirus Infections/virology , Humans , Morphogenesis , Virion/metabolism , Virus Assembly/genetics , Virus Replication/genetics , WD40 Repeats/genetics , trans-Golgi Network/metabolism
15.
JCI Insight ; 7(1)2022 01 11.
Article in English | MEDLINE | ID: mdl-35014624

ABSTRACT

Congenital cytomegalovirus (cCMV) infection is the leading infectious cause of neurodevelopmental disorders. However, the neuropathogenesis remains largely elusive due to a lack of informative animal models. In this study, we developed a congenital murine CMV (cMCMV) infection mouse model with high survival rate and long survival period that allowed long-term follow-up study of neurodevelopmental disorders. This model involves in utero intracranial injection and mimics many reported clinical manifestations of cCMV infection in infants, including growth restriction, hearing loss, and impaired cognitive and learning-memory abilities. We observed that abnormalities in MRI/CT neuroimaging were consistent with brain hemorrhage and loss of brain parenchyma, which was confirmed by pathological analysis. Neuropathological findings included ventriculomegaly and cortical atrophy associated with impaired proliferation and migration of neural progenitor cells in the developing brain at both embryonic and postnatal stages. Robust inflammatory responses during infection were shown by elevated inflammatory cytokine levels, leukocyte infiltration, and activation of microglia and astrocytes in the brain. Pathological analyses and CT neuroimaging revealed brain calcifications induced by cMCMV infection and cell death via pyroptosis. Furthermore, antiviral treatment with ganciclovir significantly improved neurological functions and mitigated brain damage as shown by CT neuroimaging. These results demonstrate that this model is suitable for investigation of mechanisms of infection-induced brain damage and long-term studies of neurodevelopmental disorders, including the development of interventions to limit CNS damage associated with cCMV infection.


Subject(s)
Cytomegalovirus Infections , Disease Models, Animal , Neuroimaging , Animals , Cytomegalovirus Infections/congenital , Cytomegalovirus Infections/diagnostic imaging , Cytomegalovirus Infections/physiopathology , Cytomegalovirus Infections/therapy , Female , Follow-Up Studies , Mice , Mice, Inbred ICR , Pregnancy
16.
Mol Neurodegener ; 17(1): 6, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35012591

ABSTRACT

BACKGROUND: Viral tracers are important tools for mapping brain connectomes. The feature of predominant anterograde transneuronal transmission offers herpes simplex virus-1 (HSV-1) strain H129 (HSV1-H129) as a promising candidate to be developed as anterograde viral tracers. In our earlier studies, we developed H129-derived anterograde polysynaptic tracers and TK deficient (H129-dTK) monosynaptic tracers. However, their broad application is limited by some intrinsic drawbacks of the H129-dTK tracers, such as low labeling intensity due to TK deficiency and potential retrograde labeling caused by axon terminal invasion. The glycoprotein K (gK) of HSV-1 plays important roles in virus entry, egress, and virus-induced cell fusion. Its deficiency severely disables virus egress and spread, while only slightly limits viral genome replication and expression of viral proteins. Therefore, we created a novel H129-derived anterograde monosynaptic tracer (H129-dgK) by targeting gK, which overcomes the limitations of H129-dTK. METHODS: Using our established platform and pipeline for developing viral tracers, we generated a novel tracer by deleting the gK gene from the H129-G4. The gK-deleted virus (H129-dgK-G4) was reconstituted and propagated in the Vero cell expressing wildtype H129 gK (gKwt) or the mutant gK (gKmut, A40V, C82S, M223I, L224V, V309M), respectively. Then the obtained viral tracers of gKmut pseudotyped and gKwt coated H129-dgK-G4 were tested in vitro and in vivo to characterize their tracing properties. RESULTS: H129-dgK-G4 expresses high levels of fluorescent proteins, eliminating the requirement of immunostaining for imaging detection. Compared to the TK deficient monosynaptic tracer H129-dTK-G4, H129-dgK-G4 labeled neurons with 1.76-fold stronger fluorescence intensity, and visualized 2.00-fold more postsynaptic neurons in the downstream brain regions. gKmut pseudotyping leads to a 77% decrease in retrograde labeling by reducing axon terminal invasion, and thus dramatically improves the anterograde-specific tracing of H129-dgK-G4. In addition, assisted by the AAV helper trans-complementarily expressing gKwt, H129-dgK-G4 allows for mapping monosynaptic connections and quantifying the circuit connectivity difference in the Alzheimer's disease and control mouse brains. CONCLUSIONS: gKmut pseudotyped H129-dgK-G4, a novel anterograde monosynaptic tracer, overcomes the limitations of H129-dTK tracers, and demonstrates desirable features of strong labeling intensity, high tracing efficiency, and improved anterograde specificity.


Subject(s)
Herpesvirus 1, Human , Animals , Axons , Brain , Herpesvirus 1, Human/genetics , Mice , Neurons
17.
Ocul Immunol Inflamm ; 30(4): 809-820, 2022 May 19.
Article in English | MEDLINE | ID: mdl-33226275

ABSTRACT

PURPOSES: To understand the pathogenesis in rat corneal endothelial cells (RCECs) induced by murine cytomegalovirus infection in vitro and in vivo. METHODS: In vitro, cultured RCECs were infected with murine cytomegalovirus strain K181-eGFP (MCMV-eGFP). In vivo, experimental rats received intracameral injection of MCMV-eGFP. Replicating viruses and morphology change of RCECs in vivo were evaluated at several time points. RESULTS: In vitro, RCECs became necrosis at 6hpi. MCMV-eGFP began replicating at 12hpi. In vivo, the inflammatory reactions appeared at 12hpi, peaked at 72hpi and gradually subsided. Replicating MCMV-eGFP appeared in RCECs in vivo from 24hpi to 72hpi. RCECs enlarged after 12hpi and capsids in the nuclei were visible at 72hpi. A monocyte was found on a corneal endothelium at 120hpi. CONCLUSIONS: RCECs were sensitive to MCMV in vitro. Replication of MCMV-eGFP in vivo began at 24hpi and ended after 72hpi, later than the inflammatory reactions.


Subject(s)
Cytomegalovirus Infections , Muromegalovirus , Animals , Endothelial Cells , Endothelium, Corneal , Epithelial Cells , Mice , Rats
18.
J Virol ; 96(2): e0147621, 2022 01 26.
Article in English | MEDLINE | ID: mdl-34730396

ABSTRACT

Human cytomegalovirus (HCMV) establishes a persistent/latent infection after primary infection, and the host factor(s) plays a key role in regulating HCMV infection status. The spread of reactivated HCMV via the hematogenous or neural route usually results in severe diseases in newborns and immunocompromised individuals. As the primary reservoirs in vivo, cells of myeloid lineage have been utilized extensively to study HCMV infection. However, the molecular mechanism of HCMV latency/reactivation in neural cells is still poorly understood. We previously showed that HCMV-infected T98G cells maintain a large number of viral genomes and support HCMV reactivation from latency upon cAMP/IBMX treatment. Here, we employed an isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomics to characterize cellular protein changes during HCMV latency and reactivation in T98G cells. A total of 168 differentially expressed proteins (DEPs) were identified, including 89 proteins in latency and 85 proteins in reactivation. Bioinformatics analysis showed that a few biological pathways were associated with HCMV latency or reactivation. Moreover, we validated 16 DEPs by both mRNA and protein expression profiles and further evaluated the effects of ApoE and the phosphatidylinositol 3-kinase (PI3K) pathway on HCMV infection. ApoE knockdown reduced HCMV loads and virus release, whereas overexpressing ApoE hampered HCMV latent infection, indicating a role in HCMV latency establishment/maintenance. Blocking the PI3K pathway by LY294002, a PI3K inhibitor, induced HCMV reactivation from latency in T98G cells. Overall, this comparative proteomics analysis delineates the cellular protein changes during HCMV latency and reactivation and provides a road map to advance our understanding of the mechanism(s) in the context of neural cells. IMPORTANCE Human cytomegalovirus (HCMV) is a highly transmissible betaherpesvirus that has a prevalence of 60% to 90% worldwide. This opportunist pathogen poses a significant threat to newborns and immunosuppressed individuals. One major obstacle for developing effective therapeutics is a poor understanding of HCMV latency/reactivation mechanisms. This study presents, for the first time, a systemic analysis of host cell protein expression changes during HCMV latency establishment and reactivation processes in neural cells. We showed that ApoE was downregulated by HCMV to facilitate latent infection. Also, the proteomics analysis has associated a few PI3K pathway-related proteins with HCMV reactivation. Altogether, this study highlights multiple host proteins and signaling pathways that can be further investigated as potential druggable targets for HCMV-related diseases, especially brain disorders.


Subject(s)
Cytomegalovirus/physiology , Proteomics , Virus Activation , Virus Latency , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Cell Line, Tumor , Gene Ontology , Humans , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Protein Interaction Maps , Proteome/genetics , Proteome/metabolism , Signal Transduction
19.
Protein Cell ; 13(3): 203-219, 2022 03.
Article in English | MEDLINE | ID: mdl-34714519

ABSTRACT

Many people affected by fragile X syndrome (FXS) and autism spectrum disorders have sensory processing deficits, such as hypersensitivity to auditory, tactile, and visual stimuli. Like FXS in humans, loss of Fmr1 in rodents also cause sensory, behavioral, and cognitive deficits. However, the neural mechanisms underlying sensory impairment, especially vision impairment, remain unclear. It remains elusive whether the visual processing deficits originate from corrupted inputs, impaired perception in the primary sensory cortex, or altered integration in the higher cortex, and there is no effective treatment. In this study, we used a genetic knockout mouse model (Fmr1KO), in vivo imaging, and behavioral measurements to show that the loss of Fmr1 impaired signal processing in the primary visual cortex (V1). Specifically, Fmr1KO mice showed enhanced responses to low-intensity stimuli but normal responses to high-intensity stimuli. This abnormality was accompanied by enhancements in local network connectivity in V1 microcircuits and increased dendritic complexity of V1 neurons. These effects were ameliorated by the acute application of GABAA receptor activators, which enhanced the activity of inhibitory neurons, or by reintroducing Fmr1 gene expression in knockout V1 neurons in both juvenile and young-adult mice. Overall, V1 plays an important role in the visual abnormalities of Fmr1KO mice and it could be possible to rescue the sensory disturbances in developed FXS and autism patients.


Subject(s)
Fragile X Syndrome , Animals , Disease Models, Animal , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome/complications , Fragile X Syndrome/genetics , Fragile X Syndrome/metabolism , Humans , Mice , Mice, Knockout , Neurons/metabolism
20.
J Womens Health (Larchmt) ; 30(11): 1546-1555, 2021 11.
Article in English | MEDLINE | ID: mdl-34448599

ABSTRACT

Objective: The outbreak of Coronavirus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) threatens a surging number of community groups within society, including women actively breastfeeding. Breastfeeding involves intimate behaviors, a major transmission route of SARS-CoV-2, and is integral to the close mother-baby relationship highly correlated with maternal psychological status. Materials and Methods: Twenty-three pregnant women and puerperae with either confirmed or suspected diagnoses of COVID-19 were enrolled in the study. The clinical characteristics and outcomes of the mothers and neonates were recorded. The presence of SARS-CoV-2, IgG, and IgM in breast milk, maternal blood, and infant blood, together with feeding patterns, was assessed within 1 month after delivery. Feeding patterns and maternal psychological status were also recorded in the second follow-up. Results: No positive detection of SARS-CoV-2 was found in neonates. All breast milk samples were negative for the detection of SARS-CoV-2. The presence of IgM for SARS-CoV-2 in breast milk was correlated with IgM presence in the maternal blood. The results of IgG detection for SARS-CoV-2 were negative in all breast milk samples. All infants were in a healthy condition in two follow-ups, and antibody tests for SARS-CoV-2 were negative. The rate of breast milk feeding increased during two follow-ups. All mothers receiving a second follow-up experienced negative psychological factors and status. Conclusions: Our findings support the feasibility of breastfeeding in women infected with SARS-CoV-2. The additional negative psychological status of mothers due to COVID-19 should also be considered during the puerperium period.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Breast Feeding , Female , Follow-Up Studies , Humans , Infant , Infant, Newborn , Infectious Disease Transmission, Vertical , Mothers , Pandemics , Pregnancy , Pregnancy Complications, Infectious/epidemiology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...